
1 of 61 CalendarX Manual - Table of Contents and copyright information

Manual for CalendarX:

A Calendar for Plone CMS portals

Lupa Zurven, http://calendarx.org
v. 0413-01, 3rd public draft, February 12, 2005 for CalendarX-0.4.13(stable)

Table of Contents:

Part I: CalendarX Overview... 3

Part II: A guide for Users: How to browse and add/edit events 8

Part III: A guide for Administrators: How to configure the calendar 10

Part IV: A guide for Developers: Modifying functionality in CalendarX................. 17

Part V: Use Case: Creating a Resource Scheduler in CalendarX............................ 18

Appendix A: Installing CalendarX.. 24

Appendix B: Guide to property sheets in CalendarX... 28

Appendix C: Guide to python scripts in CalendarX... 49

Appendix D: Guide to page template views and macros in CalendarX............................. 54

Appendix E: Guide to CSS and JavaScript code in CalendarX.. 59

Appendix F: About Python, Zope, Plone, and CalendarX 0.5 branch 60

Note: This early draft of the Manual for CalendarX contains all material from the
/docs folder, but is recompiled and beautified, and expanded a bit, and gradually
some screenshots are appearing. But it's still a draft.

The HISTORY.txt and all other important docs will still be available in the /docs
folder, just as they always have been, and they are kept updated as well.

Status of the Manual for CalendarX:
Part I: (second draft) CalendarX Overview... 3
Part II: (just a note) A guide for Users ... 8
Part III: (basic howto notes) A guide for Administrators: 10
Part IV: (just a note) A guide for Developers: .. 17
Part V: (first draft) Use Case: Resource Scheduler .. 18
Appendix A: (full notes) Installing CalendarX.. 24
Appendix B: (full notes) Guide to property sheets in CalendarX 28
Appendix C: (first draft) Guide to python scripts in CalendarX....................................... 49
Appendix D: (full draft, pics) Guide to page template views and macros in CalendarX.... 54
Appendix E: (just a note) Guide to CSS and JavaScript code in CalendarX..................... 59
Appendix F: (brief notes) About Python, Zope, Plone, and CalendarX 0.5 branch........... 60

2 of 61 CalendarX Manual - Table of Contents and copyright information

Title: Manual for CalendarX: A Calendar for Plone CMS portals
Author: Lupa Zurven, http://calendarx.org
Version: v. 0413-01, 3rd public draft, February 12, 2005 for CalendarX-0.4.13(stable)

Contents copyright Lupa Zurven, 2004-2005. Some rights reserved.

 This manual is made available in electronic form, and may be freely downloaded either
with the CalendarX software, or it may be downloaded from the CalendarX.org website, or it
may be made available at the SourceForge.net website. In a significant departure from the first
public draft, this manual is also released under a much less restrictive license. For details of this
license, see the CreativeCommons website, and specifically the 2.0 version of the "Attribution-
NonCommercial-ShareAlike 2.0" license:

 http://creativecommons.org/licenses/by-nc-sa/2.0/

In short, you may redistribute this work or derivative works for non-commercial purposes, as
long as you give the original author credit.

In full, you are free to copy, distribute, display, and perform the work and to make derivative
works under the following conditions:

* Attribution: You must give the original author credit.
* Noncommercial: You may not use this work for commercial purposes.
* Share Alike: If you alter, transform, or build upon this work, you may distribute the

resulting work only under a license identical to this one.
* Reuse: For any reuse or distribution, you must make clear to others the license terms of

this work.
* Any of these conditions can be waived if you get permission from the copyright holder.
* Your fair use and other rights are in no way affected by the above.

 I make my poor living as an open source programmer, and it takes time and effort to
write this manual and this software. I give my software away as an open source project, and I
give this manual away to anyone who downloads CalendarX or obtains it from my websites.
You can use this manual as a starting point for your own portal users, or deliver copies of it to
your development team, whatever.

 Just don't sell the manual, thank you. If you need to sell a manual to your clients for your
version of CalendarX, please write your own, or contact me for licensing this one. I am happy to
license the manual or portions of it to organizations for distribution, either on a per piece or site
license basis, and I am happy to be hired to modify and customize the manual (and CalendarX
itself) to make both of them perfectly suit your users, or you can do the customization of the
manual yourself, but a license is absolutely required for such commercial distribution.

I hope you find this Manual for CalendarX (and CalendarX itself) useful.
+lupa+

3 of 61 CalendarX Manual -- Part I CalendarX Overview

Part I: CalendarX Overview

 CalendarX is a web-based calendar application that is easy for users, allows a great deal
of flexibility in configuration options to calendar administrators, and provides a modifiable, open
source code base for developers to build on. The standard calendar includes four calendar views
(month, week by days, week by hours, and daily) and provides metacalendar tools: each event
has a subject, and the calendar can be filtered to show only those events belonging to one or
more selected subjects. This filtering can be controlled by the calendar user, or a calendar can be
configured by an administrator to show only desired subjects to all users. Users may learn more
about each event on the calendar by simply rolling the mouse over the event's title (which shows
a small popup box containing more information) or by clicking on the event and going directly to
a page with the event's details.

 CalendarX is built for the Plone content management system (CMS), which allows for a
great variety of customization options for developers. In order to make basic customization
easier for calendar administrators, CalendarX utilizes handy property sheets to allow access to
many configuration options. These property sheets are available via the ZMI (Zope Management
Interface), in the portal_skins/CalendarX folder.

 There are many options that can be configured by the CalendarX administrator through
the property sheets. These include controlling the types of events shown on the calendar, the
subjects shown, the amount of information shown in the event rollover popup text, etc. There
are also many controls on the CSS display of the calendar. First, the many colors of the calendar
itself can be adjusted to fit the look-and-feel of the rest of the Plone site. Second, CSS styles can
be applied to each event's text on the basis of what its subject is. Third, each event subject can
also have a unique icon associated with it, providing rapid visual clues on a busy calendar.

 Finally, for developers who wish to modify it, the source code for CalendarX is
accessible to allow overrides for each instance of CalendarX in a site. It is even possible to
create subcalendars, as is illustrated here in the creation of a basic Resource Scheduling calendar.
Custom views can also be created for CalendarX. CalendarX is released as open source software
under the General Public License (GPL).

About this Manual for CalendarX:
 For the purposes of this manual, I'm considering the needs of three types of people:

Users: visitors and/or members of a Plone portal who may need calendar instruction
for browsing and/or for entering Events for the calendar.

Administrators: someone setting up one or more CalendarX instances for a portal
and configuring CalendarX to suit the needs of the portal.

Developers: programmers needing a solid calendar application for customization, or
for advanced Administrators looking for additional functionality.

4 of 61 CalendarX Manual -- Part I CalendarX Overview

 Part II is a User's Guide, a description (with pictures) on how to use CalendarX. Part
III of the manual is an Administrator's Guide, offering instruction on configuring CalendarX to
meet the needs of a portal's visitors. Part IV is a Developer's Guide, providing a closer look at
the inner workings of CalendarX, a brief guided tour to the source code and where to look for the
various functions of CalendarX. Part V of the manual is a case study in advanced configuration:
how to use CalendarX with its subcalendar abilities to create a Resource Scheduling calendar
suitable for an organization with equipment to loan out to its members. It would be equally
suitable for a Room Scheduling calendar, I believe, although I personally haven't used it for such
yet.

CalendarX Significant Features:

 CalendarX has many features that make it a usable web-based calendar right out of the
box, but its real strength is in its configurability and customizability. We will first list some of
the features that make it useful with no modifications to the configuration property sheets at all.

Major Out-Of-The-Box Features:

1. Comfortable look-and-feel, like a regular calendar with month, week-by-day,
week-by-hour, and day views.

2. Each event can be assigned one or more Subjects, and the calendar can be sorted
by the user to show only events belonging to one or more of those Subjects.

3. Navigation is sensible; users can go to the previous or next month, week or day
via a simple text link, or they can jump to a specific date in the past or future.

 CalendarX has many additional features that can be configured easily by the calendar
administrator without changing any of the source code. This is accomplished through the use of
property sheets, which contain attributes that can be adjusted through the use of checkboxes and
text boxes through the ZMI.

Major Configuration Features:

1. Colors, fonts, font sizes, and calendar cell sizing are all adjustable, as well as the
type of information shown to users when they roll the mouse cursor over an event
on the calendar.

2. Subjects for the events can be modified. Have as many as you like, and similar
subjects may be grouped and given a group name, or nicknames can be applied to
subjects.

3. Calendars can be restricted to show a limited type of event in several ways. For
example, a Music calendar could show only those events that have Music as their
subject, or perhaps that have Concert, Recital, Rehearsal or Jam Session as their
subject.

4. Users can be shown a link ("Add New Event") that allows them to add new events
to the calendar if they have the proper permission to do so (based on their

5 of 61 CalendarX Manual -- Part I CalendarX Overview

authentication and role in the Plone CMS). You can also control the type of event
and where this event will be stored through this link method.

5. You can manage the workflow of the event publishing method -- should user
contributed events go straight up onto the calendar? Or should the events go
through a review/publish cycle first? You decide with CalendarX and Plone.

6. Subcalendars can be created with different properties from the master calendar.
This is useful for creation of specialty calendars with many events, such as a
Resource Scheduling calendar, for people to reserve rooms or equipment. Read
Part V of this manual for an example of using CalendarX as a Resource
Scheduling calendar.

 CalendarX is further customizable by changing the source code itself. CalendarX is open
source software released under the GPL, which gives you a great deal of freedom. You can
change anything in the source code of CalendarX that you want, and all of the source code is
available to you for this purpose. Here are a few ideas on what can be accomplished through
relatively modest changes in the source code itself.

Possible new functionality available by rewriting CalendarX code:

1. Creation of new views, or changing the behavior of existing views.
2. Creation of a customized version of CalendarX to distribute.
3. Creation of custom Event types, perhaps that include space for an uploaded

image, or a sound file, or a digital video clip.
4. Creating new queries to access outside databases of events.

CalendarX Licensing:

 If you do create something really neat with CalendarX, we'd greatly appreciate it if you'd
share your work with the CalendarX community. We have a community website at
http://CalendarX.org where you can add Tutorials or HowTo documents, or enter bug reports or
feature requests. If you create interesting modifications to the source code underlying
CalendarX, we'd certainly like to hear about those too, so that we can improve CalendarX for
everyone. You don't necessarily have to share your modifications, but you should be aware that
under certain circumstances you may have to share your code, or else you'll not be in keeping
with the license agreement that accompanies CalendarX.

 CalendarX is licensed under the General Public License (GPL) to give you a great deal of
freedom with the code, and to give the developer (and copyright holder) a great deal of freedom
as well. The GPL allows you to customize CalendarX with NO restrictions, and to distribute
your customizations with very few restrictions. In brief, this software is free and you can't
license it in any way that takes away its freedom. You can give away your changes to others,
even a deep rewriting of the code, but you can't do so under different licensing conditions if they
are not compatible with the GPL. So for instance, you are certainly allowed to make changes
that would make CalendarX more appropriate for a corporate intranet calendar and install such a
program for as many corporations as you can convince to use it. You may even charge the

6 of 61 CalendarX Manual -- Part I CalendarX Overview

corporations for your services customizing, installing and configuring that program, or for
training and maintenance of the program, or for any other ancillary services. But you must
license it to those corporations under the GPL or a compatible license, which preserves all these
same freedoms for them. You must provide the source code to these clients. They will have the
right (under the GPL) to further modify and give away the changes you made for them or to their
copy of the code (that's what the GPL does). They may choose not to give them away, but they
must be granted the right to do so. So to put it another way, you cannot use CalendarX source
code as a basis for a proprietary (non-free) computer program. Use CalendarX for making free
software.

 Why this license for CalendarX? The GPL is designed for software that we want to keep
free for growth and exploration, free to be customized and crafted by anyone who desires to do
so. In order to establish this freedom, the GPL says you can change things in the software
however you want, but in order to let others use your changes, you must release your code to
them with the same or freer conditions. If you just want to change the code for yourself and not
release your changes, that is fine! Go ahead -- you are free to keep any changes to yourself! But
in order to share your code that utilizes CalendarX code, you must ensure our CalendarX's
freedom by licensing your modifications in a compatible way.

 Of course, this GPL is not such an onerous license. IBM identified a tremendous
opportunity in selling consulting services based on the Linux operating system; Linux is released
under the GPL so IBM doesn't really sell Linux, but it does sell consulting, installation,
configuration, training, and of course server hardware all designed to help organizations run
computers with Linux. If IBM feels comfortable making money with GPL software, I think the
rest of us can find ways to make it work too.

 Therefore, you are granted the freedom to make money installing, configuring and
customizing CalendarX for others, but you must release to them your code changes under
comparably licensed conditions (for simplicity... just stick to the GPL). These are the same
terms that apply to Plone, which is also (as of version 2.0.5) released under the GPL. These are
comfortable terms for most people, and work fine for most open source consultants like me. If
you aren't comfortable with those licensing terms, you should work with a different calendar
application, one that allows you to change the source code and release it as your own and sell it
as your own. We chose the GPL for CalendarX because we want to build a community around
the calendar that feels that their contributions will be kept free for the good of all. Many of the
best features of CalendarX come either from code contributions or the freely offered suggestions
of our users. If you have any questions about CalendarX and its licensing, feel free to contact me
and ask.

Licensing FAQs:

Q: If I want to use CalendarX as a starting point for my proprietary calendar app, will you
consider licensing it to me under a non-GPL license?
A: No. We don't want to, and we really can't. CalendarX uses contributed code that has been
given under the conditions that CalendarX be a GPL'd product. Also, CalendarX is fairly tightly

7 of 61 CalendarX Manual -- Part I CalendarX Overview

integrated with Plone, importing key modules and such, and since Plone is GPL'd, CalendarX is
best kept a GPL product. Besides, we like it this way, not having to worry about licensing
considerations and knowing it will always be around to use as long as it has use for folks.

Q: Has anyone actually asked that question about CalendarX?
A: No. We can always hope though.

<dtml-comment>

"We"? Why do I keep using "we" when it seems to be just "me"?
Lupa has many friends and helpers and has been working on and off
on CalendarX in Zope for three years before actually releasing it
for Plone in 2004. Ongoing conversation with everyone helps
tremendously. When it seems appropriate, as in the case of
licensing, I'll use the royal "we" to indicate that it's more
than just me that thinks this way. Other times, when I'm writing
for myself, I'll use first person singular. And when I'm feeling
testy, I might write in the third person impersonal, or even
first person abusive. So just watch it.

</dtml-comment>

8 of 61 CalendarX Manual -- Part II CalendarX User's Guide

Part II: A guide for Users: How to browse the calendar and add/edit events

 CalendarX is easy and intuitive to use. If you simply want to browse through the
calendar, there are only a few things you need to know:

How to change views (Month, Week and Day views).
How to read details about an Event.
How to change dates (Next period, Previous period, Jump to a date)
How to look at just one Subject of Events at a time, or a selection of Subjects.

 If your calendar has been set up to allow you to add and/or edit events for the calendar,
then there are some extra steps you should learn:

How to Add an Event (three ways).
How to enter the Edit mode for an Event.
What the various parts of an Event entry mean.
Getting your event "Published".

 This User guide will cover the instructions for browsing the calendar first, and then cover
the details of adding and editing events. All instructions here will be for use with a standard
installation of CalendarX... modifications to the calendar by your website Administrator may
cause your calendar to look or act somewhat differently, but it should be similar enough that you
don't have much problem following these instructions.

Welcome to CalendarX!

 Step One. Let's get to know your calendar. Figure 1 is a

[to be continued]

Top
Caption - calendar overview 01

9 of 61 CalendarX Manual -- Part II CalendarX User's Guide

[notes from the CalendarX Help Tab]

Use the tabs across the top of the calendar screen to select different
ways of viewing the organization's calendar.

Use the "previous" and "next" links to scroll through the dates to
reach the date you are interested in, or alternatively you can select
a date from the drop-down menus and click on "jump" to go there directly.

In any of the week/month views you can click on an individual date to
view the details of events happening on that particular day.

The default view of the calendar is to show all the important dates
in the organization. However, if you are only interested in (for example)
dates relevant to one category of events, you can use the tick boxes and
"Refresh" button near the top of the page to make the the calendar show
only those dates. You can have as many selection criteria as you like,
but note that you will need to make sure "view all" is NOT ticked if you
want the filtering to work.

On all screens, you can hover the mouse over a particular event to find out
more information about it. There may also be supplementary information for
the
event which you can find by clicking on it.

TO ADD AN EVENT:
Click on your *my folder* link, and select "Event" from the dropdown list.
Enter information about your event, and make certain to fill out all the
relevant parts like End date and Start date. Make your entries informative
so that viewers of your event can find out everything they need to know.

10 of 61 CalendarX Manual -- Part III CalendarX Administrator's Guide

Part III: A guide for Administrators: How to configure the calendar

How to get to the property sheets.
How to change some common properties.
How to migrate from an older version of CalendarX.

[notes from the /docs folder]

From the CUSTOM.txt file:
I. Overview
A. Go to portal_skins/CalendarX. Find one of the seven property sheets (named
 CX_props_yadayada). Click on one of them to view it, and then click the
 "Customize" button to move a copy of the property sheet into the /custom folder.
 Now you can modify the properties (use the Properties tab!) and start changing the
 calendar behavior. In brief:
 CX_props_calendar: controls most basic calendar functionality, including
 what types of events are shown, how the Subject bar is displayed, etc.
 CX_props_css: provides many opportunities for changing the colors and
 fonts displayed in the calendar.
 CX_props_custom: does nothing. If you add new functionality to your
 calendar and need properties, put them in here.
 CX_props_popup: checkboxes to select which text is displayed in the
 rollover text box associated with each event displayed in the calendar.
 CX_props_addeventlink: If you wish to have an "Add New Event" link
 displayed in the subject bar, configure the link here.
 CX_props_subcalendar: If you have subcalendars beneath your main calendar,
 you will need to configure them here.
 CX_props_eventdisplays: allows you to use different icons and CSS classes
 based on the Subject of each event.

B. You can customize anything else in the /CalendarX folder. Page templates, macros,
 CSS or Python scripts, or Javascript... anything you find there. Usually this means
 clicking the "Customize" button which puts a copy of the object in the /custom
 folder for you, where you can change things and then refresh your calendar to see the
 results.

C. To create more than one instance of CalendarX is easy... just add another
 one from the dropdown list. However, all your calendars will use the same
 properties from the /portal_skins/custom or /portal_skins/CalendarX folders.

 To make each calendar different:
 IN ZMI: CUT all the customized objects that you need from the
 /portal_skins/custom folder, and PASTE them into your CalendarX folder.
 Now your calendar can be customized locally and independently from any

11 of 61 CalendarX Manual -- Part III CalendarX Administrator's Guide

 other calendars. I like to use this approach anyway, even if I'm only
 using ONE CalendarX instance in my Plone site, because it cleans up the
 /custom folder for other uses.

D. If you want to use Subcalendars, move your customized objects out
 of the /portal_skins/custom folder and put them directly into your
 /calendar folder (using the ZMI). You will need a copy of CX_props_subcalendar
 in each of your MAIN and SUBcalendar folders... and you will very very likely
 need CX_props_calendar in each of them as well. There's a detailed section later
 in the manual that provides an example of using Subcalendars (Part V).

II. Tips.
1. Slots/Portlets. For most users, we recommend disabling the slots on your
 calendar folder, or more specifically, making the slots be empty.

1A. I WANT PORTLETS.
 If you want portlets appearing in the slots, next to your calendar, use the ZMI
 and navigate to your CalendarX folder instance. Click on the Properties tab of
 your calendar folder in the ZMI. What you need here are two properties called
 "left_slots" and "right_slots", and they should each be of the "lines" type of
 properties. In these properties, type in the macro calls that will add portlets in
 these locations... you can see the examples of how these should look by going to
 the Properties tab in the root of your Plone site to see how the default ones are set
 up for your whole Plone portal.

1B. I DON'T WANT ANY PORTLETS TO SHOW.
 If you want a full width CalendarX, then you want EMPTY left_slots and right_slots.
 Follow the instructions above, and make sure that your slots properties are empty.
 This tells Plone to collapse the left and right columns, allowing CalendarX to expand
 fully left and right... or nearly fully. Still seems to be a little bit of space reserved on
 the right side that I haven't explored how to collapse completely. But pretty good.

2. Categories for the Calendar
 The calendar uses categories based on the default Event Subjects.
 Currently these are Apppointment, Convention, Meeting, Work, Social Event.
 You can change these in the portal_metadata/Elements/Subject. If you do
 this, CalendarX needs to be told about it... this will be fixed in a
 future version to be automatic. Actually, it is now semi-automatic. If
 you want CalendarX to choose Subjects based on all the Subjects available,
 see the instructions in CX_props_calendar_text.txt

 So, find the CX_props_calendar sheet, and list the Subjects line by line
 in the "listOfSubjects" attribute, just like you made them in
 portal_metadata. And then you're done.

12 of 61 CalendarX Manual -- Part III CalendarX Administrator's Guide

 Actually, there's more. You may want/need to change the CSS classes that go
 along with each category (subject). For this you'll need to customize the
 calendar.css file. See more about this in Tips #10 below.

 Actually, now there's even more. If you have used very LONG subject names,
 like "French Connection United Kingdom", there is an option to create
 shorter "nicknames" for each of your subjects, and show them at the top of
 the calendar instead of the LONG names. For example, you could use
 the much shorter "FCUK" instead of the long, full name of the Subject
 used in the earlier example.

 And now there's even more! You can make groupings of subjects, using the
 nicknames approach. First, in the 'listOfSubjects' attribute, list your
 subject groupings with commas like this:
 Mrs Wilson 3rd Grade,Mr Smith 3rd Grade
 Mrs Farber 4th Grade,Mrs Jasper 4th Grade
 Mr Spinky 5th Grade,Mr Zurven 5th Grade
 Field Hockey,Jump Rope,Basketball,Soccer,Chess Club

 Then in the 'listOfSubjectTitles' attribute, put the nicknames in that
 will be shown in the Subject Bar, like so:
 3rd Grade
 4th Grade
 5th Grade
 Sports

 Now when a user clicks 'Sports', events from all the sports listed in the
 corresponding listOfSubjects line will be returned in a calendar. This is
 usually much preferred to listing all 11 Subjects in the Subject Bar of
 CalendarX.

 Also, this functionality makes subcalendar usage very powerful, as you
 will see if you keep reading this drivel.

3. Basic: Access to your calendar for your visitors
 First, publish your /calendar folder from within Plone so that it becomes
 available on the portlet_navigation. Or not, if you don't want it to
 show up there.

 Second, another nice hook is to create a portal_tab to go to your new
 calendar.
 A. In the ZMI, go to portal actions.
 B. Add a new action as follows:
 Name: Calendar
 Id: calendar
 Action: string:${portal_url}/calendar

13 of 61 CalendarX Manual -- Part III CalendarX Administrator's Guide

 Condition: (empty or whatever)
 Permission: View
 Category: portal_tabs
 Visible? (checked)

 This will display your defaultView (whichever view you have selected in
 the defaultView property in CX_props_calendar). Default is 'month'.

4. Multiple Calendars.
 Now you can have multiple calendars on your site. Place another CalendarX
 instance wherever you want the calendar to appear. Chances are that if you
 have multiple calendars, each one will be configured differently. In that
 case, simply customizing a property sheet won't be enough, because
 portal_skins/custom can't have two different property sheets both
 named the same thing. SO... go into the ZMI and cut any CalendarX
 property sheets, scripts, icons or templates out of portal_skins/custom,
 and paste them directly into your CalendarX folder instance. Now these
 customized sheets will ONLY be found by the desired calendar instance, and
 you can have as many independent, unique calendars as you wish.

5. Restricting events on your calendars.
 A common request is to restrict the types of events shown on a calendar.
 There are now several ways to do this without customizing the calendar views
 or macros, by using attributes in CX_props_calendar properties.

 5a. Subject restrictions.
 If you want to display ONLY events that contain certain subjects, you can
 use the "restrictToThisListOfSubjects" attribute along with the
 "listOfSubjects" attribute. Read the directions, and simply
 list the Subjects that you wish to show. For example, this might be a way
 to have a Music Events calendar on your site, with multiple types of Music
 events, as well as an Arts Events calendar, with its own set of Arts
 event categories.

 5b. Event Type restrictions.
 If you want to display ONLY events of a certain "portal_type", use the
 "restrictToThisListOfTypes" attribute along with the "listOfTypes"
 attribute. A "portal_type" is the type of Plone object that you are using
 for your events. For example, you can go to portal_types in the root of
 your Plone site, copy and paste the existing Event type, and modify it so
 that its type is a "Staff Event". Then you can create a calendar that
 will ONLY show Staff Events, just for Staff usage. A good idea is to add
 a getNotAddableTypes.py script in your site that will restrict usage of the
 "Staff Event" type to just members of your "Staff". See howtos on the
 Plone.org website for more instructions on how to use getNotAddableTypes.

14 of 61 CalendarX Manual -- Part III CalendarX Administrator's Guide

 5c. Path restrictions.
 If you want to display ONLY events that are found within certain folders
 of your Plone site, you can use the "restrictToThisListOfPaths" attribute
 along with the "listOfPaths" attribute. Read the directions, and simply
 list the full paths (as found in the Path index in the portal_catalog)
 for the folder objects you wish to use. Then ONLY those events found within
 those folders will display on your calendar.

6. Look at all the calendar properties, and read about them in the /docs
 folder. There are lots of things you can adjust, and they're all
 documented. Try them and see what you like.

7. There's an attribute in calendar properties that lets 'visible' as well
 as 'published' events show up on the calendar.

8. Nearly all the most important CSS attributes are now adjustable from
 the CSS properties sheet. Font sizes are all expressed in percentages
 so that they can vary the way the rest of Plone can, with simple stylesheet
 changes.

9. "Add New Event" link: A new addition to 0.4 branch is the ability to put
 a link in the Subject Bar that allows users to click on it and go to an
 appropriate folder where they can add a new Event. There is a property
 sheet that controls this behavior (i.e., where the link goes and who gets
 to see the link at all). In brief, the macro controlling this link first
 checks to see that the user is Authenticated on the site (few sites allow
 un-Authenticated users to add Events, and those who do can easily disable
 this in the macro code). The link then can be set to the following
 possibilities:
 A. Link to the Member's personal folder.
 B. Link to a specified folder.
 C. Link for certain users to go to different folders (one specified
 folder per specified user).
 D. Link for users with specific Roles to go to different folders (one
 specified folder per specified Role).
 E. Link to a specified subfolder within the Member's folder.
 If choice C or D is selected, and the current users is not listed among
 the possible choices (for listed users or Roles), then the link will roll
 back to choice B or A, if either of these has been checked. If the user
 is not found in C or D and neither B nor A has been checked, then the
 "Add New Event" link will NOT be displayed for this user.

10. New Icons and CSS classes, selected by Event Subject. Now your calendar
 can really show its colors by letting you highlight each event on your
 calendar in color and with icons depending on the Subject. Simply

15 of 61 CalendarX Manual -- Part III CalendarX Administrator's Guide

 check the appropriate box and follow the examples, listing a single line
 for each of your Subjects that tells it what icon to use. Add those icons
 to your /custom folder, or /calendar instance folder, and your calendar
 will take on a whole new look. Read the details in the
 CX_props_eventdisplays.txt file in the /docs folder. Or just check the
 box and try it with the icons included in the default settings.

 You'll also need to add special CSS classes for your subjects. The
 default ones are in calendar.css... look at them to see how to do it for
 yourself. There are currently two classes for each subject: one class for
 the link shown within the calendar proper, and one class for the Subject
 bar up at the top of the calendar page.

 Also: Icons and CSS by Event Type. Same as above, but works for the
 specified Event types listed. Should come in handy for tricky subcalendars.

11. SPEED TIPS. CalendarX is a busy product, doing lots of queries and lookups
 in order to display a full-featured calendar. Here are two speed tips to
 make sure that CalendarX is running as fast as reasonable. The first one
 is imperative, the second is definitely optional. Neither have been
 rigorously benchmarked, but informal benchmarks give the first one a
 potential speed up of as much as five-fold. SO DO IT, if it's not already
 done for you. It's painless.

 Speed Tip #1: The skins of Plone create an unbearable performance hit.
 This tip speeds up the calendar by putting it near the top of the skins
 list of layers. Moving it up from the bottom of the skin layers list
 can increase speed severalfold. Go to portal_skins in your Plone
 site, and click on the Properties tab. Then find CalendarX in the listing
 for your plone skin (usually Plone Default or Plone Tableless) and move
 CalendarX up to the second spot, right underneath "custom". That's it.
 Now your calendar skin will be found very quickly.

 Note: CalendarX tries to install up at the top below "custom" at
 installation. So this is probably already done for you. But if you
 install other products AFTER CalendarX, they may install ahead of
 CalendarX in your skins. So you may need to go back and move CalendarX
 up in the layers at some future time.

 Speed Tip #2: Customize the query methods from /portal_skins/CalendarX
 folder and move them locally to the location of the calendar instance
 itself... no more skin-inefficiency, because they are found locally. This
 should help, but I have no real benchmarks to prove it. In order to
 really work, you should move virtually all the scripts and property sheets
 to your CalendarX instance. This should definitely be faster than having
 your scripts all in the skin layers hierarchy, but probably not much of a

16 of 61 CalendarX Manual -- Part III CalendarX Administrator's Guide

 boost over Speed Tip #1 and it is more work, so don't bother.

 I'll keep looking for other tips and speed ups. I made some code changes
 in 0.4.3 to speed up the month query, and need to consider some similar
 changes in the other templates soon. There are other speed optimizations
 in the new 0.5 branch, but it will not likely be faster than the 0.4 branch
 because it also has more complex queries.

17 of 61 CalendarX Manual -- Part IV CalendarX Developer's Guide

Part IV: A guide for Developers: Modifying functionality in CalendarX

How CalendarX works -- a brief guided tour.

Contents: (future)
The main folder, and what it does.
The python scripts.
The page templates.
The property sheets.
The macros.
The CSS and Javascript files.

A. The main folder, and what it does. -- For now, read Part III for Administrators over again.

B. The python scripts. -- For now, read Appendix C.

C. The page templates. -- For now, read Appendix D.

D. The property sheets. -- For now, read Appendix B.

E. The macros. -- also covered (briefly) in Appendix B.

F. The CSS and Javascript files. -- For now, the miniscule Appendix E must suffice.

18 of 61 CalendarX Manual -- Part V Use Case: Resource Scheduling with CalendarX

Part V: Use Case: Creating a Resource Scheduler with CalendarX

 A common application for calendar applications is the scheduling and reservations of
available equipment, rooms, and facilities for an organization. CalendarX can handle the basic
functionality of a Resource Scheduling application through the use of subcalendars. Here we
will go through the steps you need to create a Resource Scheduling calendar application for an
environmental group that has a number of Beamers (LCD projectors), Bicycles, Cameras,
Laptops, and Rooms at their headquarters that are made available to their members on a first-
come-first-served basis.

 The calendar will be organized into one Main calendar with several nested Subcalendars.
We'll name the Main calendar "Resources", and we'll name each of the Subcalendars for its
primary resource: Beamers, Bicycles, Cameras, Laptops, and Rooms.

 Imagine that you are in this organization and you have an important meeting to attend in
Antwerp next week. It's a last minute invitation to speak to the executive board of another
environmental group, and you'll need to take along with you both a beamer and a laptop. You
should be able to quickly examine the calendar to see only the laptop and beamer schedules, so
that you know whether you can borrow ones from the group, or if you might have to make other
arrangements.

 That's an easy one. The Resources calendar will display ALL the resources that are being
used on each day, but it will have the ability to allow users to filter the Subjects so that only
select resource categories are visible. This is just like the regular Subject filtering done by
CalendarX elsewhere, except here our Subjects of interest will be Laptops and Beamers. So you
would just check the boxes by Beamers and Laptops (and uncheck the one that says View All),
and hit the Refresh button. Now you can see which beamers and laptops are checked out on the
days you need them for Antwerp.

 Overall, this one view should work fine for most uses. Use the Month view to start, then
zoom in to the week or day views. Even with just one Subject category chosen (e.g., Laptops),
the calendar would show all the scheduled Laptop reservations, and a quick rollover with the
mouse could display which laptops are reserved, etc. But sometimes a more detailed view is
desired, or perhaps you ONLY want to see the reserved times for the really nice laptops, the ones
with 1 Gb of RAM and the 17" wideview monitors. To accomplish this, you would click on the
Subject link for Laptops and you can enter the Laptops subcalendar. Here only laptop
reservations are shown, and the Subject bar now lists all the available laptops. To reduce the
clutter on the screen, select just the few laptops that you are interested in, and hit the Refresh
button to show their availability.

 So let's build this resource scheduling calendar. Right now. It should take about 30-40
minutes or so if you have a clean Plone portal to work on. The first step will be to create some
custom Event types for the various resources we'll be scheduling. The second step will be to
build the Main calendar and configure it, and finally we'll add the subcalendars and configure
them. We use custom Event types because it makes it much easier to restrict our Resources

19 of 61 CalendarX Manual -- Part V Use Case: Resource Scheduling with CalendarX

calendar to only see the events that we're interested in, and they won't interfere with other
calendars in this Plone portal.

Step 1. Create New Event Types.

 First you need to create content types for each resource event. We do this because
restricting CalendarX by event type is a handy way to create a nicely organized resource
scheduling calendar. An easy way to get new content types is to "repurpose" the existing Plone
Event type:

A. In the ZMI for your portal, click on portal_types.
B. Select the checkbox beside the Event type. Then hit the COPY button at the bottom of the

page, and then hit the PASTE button. This will create a duplicate of the Event type
called copy_of_Event, and we can rename this for our first Resource type.

C. Select the checkbox next to copy_of_Event and then click the RENAME button at the bottom
of the page. In the form, give it the new name Reserve a Beamer.

D. Click on the new Reserve a Beamer type, which will open up the form for editing it. Now
type "Reserve a Bicycle" in the form for the Portal Meta Type property, which will nicely
identify this special Event type in the portal_catalog (this will show up in the catalog
metadata as both "portal_type" and as "Type"). Optionally, you can type in a new
description here too ("Use this Event type to Reserve a Beamer on our Resource
Scheduling Calendar"). Hit SAVE at the bottom of the form.

E. Repeat this process: start with the Reserve a Beamer type, COPY, PASTE, RENAME
several times to create event types for Bicycles, Cameras, Laptops and Rooms. Be sure
and edit each one to change its Portal Meta Type property. Now you have all the Event
types you need.

 Before we go on, we should also set up the proper subject categories for these new event
types. For resource scheduling, the Subject will be the specific resources that will be available to
schedule. In this case, we'll add Beamer1, Beamer2, Beamer3 as our three possible Subjects
for the Reserve a Beamer event type (we only have three beamers available):

F. In the ZMI for your portal, click on portal_metadata.
G. Click on the Elements tab at the top, to take you to the Update Element Metadata Policies

tab. Then click on the Subjects element type in the menu list of metadata elements
available.

H. Now you can see a list of Content Types (such as Event) and a number of options associated
with their Subject metadata. Subjects are created specifically for each content type, using
this form. Since your content types are new, they aren't yet listed here. Drop down
toward the bottom of this form to the section for adding a new type to the roster... it's an
empty form for a <new type>. Use the dropdown list for Content type to select Reserve
a Beamer, and in the Vocabulary textbox, list your three Subjects, one per line:
 Beamer1

 Beamer2
 Beamer3

20 of 61 CalendarX Manual -- Part V Use Case: Resource Scheduling with CalendarX

 Also check the box that says Enforce vocabulary (yes). This means that users must
choose one of the Beamers when they fill out this Reserve a Beamer form. Then click
ADD to add this to the metadata.

I. Repeat step H for each of the other Reserve a Resource types you've created. Give them each
a vocabulary of resources available for checkout. For the Rooms, list the room numbers
or room and building numbers, whatever is appropriate for your users to readily identify
each resource. If Beamer intensities or other properties are important, name your
resources accordingly (Zoom 2400L, NoZoom 1500L, etc.)

 Now your new Resource content types are ready. Let's make the calendar.

Step 2. Create the Main Resources calendar.

A. In the ZMI, add a CalendarX Content, and select CalendarX (the
 only option) and name it what you want (the id of the calendar). This
 will be your MAIN calendar. We'll create your Subcalendars in a bit.
B. Go to /portal_skins/CalendarX and hit customize on each of these
 three property sheets: CX_props_calendar, CX_props_popups, and
 CX_props_subcalendar. Then in the /portal_skins/custom folder, select
 all three of them and click the CUT button. Navigate to your new MAIN
 calendar instance and then click the PASTE button, so that all three of
 these fresh property sheets are now inside your MAIN calendar folder.
C. Set the following configuration settings in this MAIN calendar
 (we'll set up the subcalendars afterward)...

MAIN calendar:
 config: CX_props_calendar:
 1. useMultiSubjects: checked. The cool subcalendar menuing options
 ONLY will work with this option selected.
 2. listOfSubjects: names of the subcalendars I'm using: Beamers,
 Bicycles, Cameras, Laptops, Rooms
 3. eventTypes: I'm using five new Event types created by simply
 repurposing the CMF Event type, with new names and subjects.
 4. restrictToThisListOfTypes: checked, because I want this calendar to
 ONLY show these special reservation events.
 5. useCalendarHelp: checked. I think calendar help will be needed
 because subcalendars may present conceptual problems for some users.

MAIN calendar:
 config: CX_props_subcalendar:
 1. useSubCalendarSubjectMenu: checked, because you need that to
 properly navigate to your subcalendars.
 2. listOfSubCalendars: fill this with the list of IDs for the
 subcalendars. Here this is: beamers, bicycles, cameras, laptops,
 and rooms.

21 of 61 CalendarX Manual -- Part V Use Case: Resource Scheduling with CalendarX

 3. isSubCalendar - nope, not one.
 4. nameOfSubCalendar - nope.

MAIN calendar:
 config: CX_props_popup:
 1. expanded popup coverage by checking several options, including:
 showPOPTitle, Type, Subject, Start, End, Creator, Description.

Step 4. In the ZMI, inside the MAIN calendar, add a new CalendarX
 Content, and select CalendarX (the only option) and name this one
 what you want for the id of one of your Subcalendars.

Step 5. Go to /portal_skins/CalendarX and hit customize on each of these
 two property sheets: CX_props_calendar and CX_props_subcalendar. Then
 in the /portal_skins/custom folder, select both of them and click the
 CUT button. Navigate to your new Subcalendar instance and then
 click the PASTE button, so that these two fresh property sheets are
 now inside your Subcalendar folder.

Step 6. Set the following configuration settings in this Subcalendar
 (we'll set up the other subcalendars you want afterward)...

SUB calendar:
 config: CX_props_calendar:
 1. useMultiSubjects: checked. The cool subcalendar menuing options
 ONLY will work with this option selected.
 2. listOfSubjects: names of the subjects desired for this subcalendar.
 For example, in the Bicycles subcalendar I'm using: Bicycle1,
 Bicycle2, etc. If this was a school calendar, these might be names
 of teachers, or sports, or... whatever you want.
 3. eventTypes: I list the one type of Event that I want to show in this
 subcalendar because I'm restricting my events this way: for my
 Bicycle subcalendar, this uses: Reserve a Bicycle.
 4. restrictToThisListOfTypes: checked, because I want this calendar to
 ONLY show these special reservations for bicycle events.
 5. useCalendarHelp: checked. I think calendar help will be needed
 because subcalendars may present conceptual problems for some users.

SUB calendar:
 config: CX_props_subcalendar:
 1. useSubCalendarSubjectMenu: UNchecked. ONLY for main calendars.
 2. listOfSubCalendars: Unused. ONLY for main calendars.
 3. isSubCalendar - Yes, because this is a subcalendar.
 4. nameOfSubCalendar - A name (Bicycle).

22 of 61 CalendarX Manual -- Part V Use Case: Resource Scheduling with CalendarX

Step 6b. Note that we did NOT include a CX_props_popup in the subcalendar.
 That's because we want the Subcalendar behavior to inherit the values
 of the MAIN calendar for these popups. ONLY add property sheets into a
 subcalendar if you don't want to inherit the values of the properties
 of the MAIN calendar.

Step 7. In the ZMI, in the MAIN calendar, select the checkbox for your
 Subcalendar, and click the COPY button. Then hit the PASTE button four
 times, to create four subcalendars. Each one will already have the
 property sheets inside them, although they each need some configuration,
 as follows (leave other choices as they were set for the first
 subcalendar):

SUB calendar:
 config: CX_props_calendar:
 2. listOfSubjects: names of the subjects desired for each of these
 additional subcalendars.
 For example, in the Cameras subcalendar I'm using: Camera1,
 Camera2, etc. If this was a school calendar, these might be names
 of teachers, or sports, or... whatever you want.
 3. eventTypes: I list the one type of Event that I want to show in this
 subcalendar because I'm restricting my events this way: for my
 Camera subcalendar, this uses: Reserve a Camera.

SUB calendar:
 config: CX_props_subcalendar:
 4. nameOfSubCalendar - A name (ex. Camera).

Step 7b. You make those changes for EACH of the subcalendars.

Step 8. Go add some of your new resource scheduling events. See them
 on your calendar. You'll need to publish them, of course. That's
 fairly comparable in workflow terms to asking permission to schedule
 a given resource, so I think that's a reasonable default setup.
 Alternatively, you can check the includeReviewStateVisible property
 in CX_props_calendar, and then all entries will be shown as soon as
 they are entered in the Visible state.

 Optionally, you can use some of the other property sheets to tweak your calendar further.
For example, you probably will want to skin the calendar's CSS properties so that the colors and
fonts match the rest of your website. So when you do Step 2B above (or later, after you've
thought about it), repeat Step 2B for the CX_props_css and CX_props_addeventlink property
sheets into the Main calendar folder, and configure them appropriately. You won't need to copy

23 of 61 CalendarX Manual -- Part V Use Case: Resource Scheduling with CalendarX

them into the subcalendar folders unless you want different CSS options for the subcalendars... I
can see when this might provide a nice touch, but not on most calendars.

 A good reason to use the CX_props_addeventlink property sheet here is if you want your
Users to put all their Reserve a Resource events into one folder. That might make more sense
for some organizations, and will certainly make cleanup of old Resource events easier for a
calendar Administrator. In that case, configure the Add New Event link to direct all users into a
single Plone folder where events will be stored. Make sure that the folder has permissions set
properly so that all Users can add events there.

 That's all. Now go and add lots of events and see how it all works. See how the
navigation works, and allows you to filter according to the types of resources you may want, or
lets you drill down and only look at one resource at a time in the subcalendars.

 Go crazy and dream up new uses for subcalendars. I think it should work great for school
calendars, and I'll probably be setting one up that way soon. Let me know what great calendars
with subcalendars you create. Go to CalendarX.org and add a CalendarX Sighting document
with a link to your CalendarX calendar so the community can see what you've done.

24 of 61 CalendarX Manual -- Appendix A Installing CalendarX

Appendix A: Installing CalendarX for an existing Plone portal

 I am not going to tell you how to install Plone (or Python or Zope) here. I have opinions
on that but I'm not going to tell you them here. So I am assuming that you have a reasonably
current (version 2.0.x) Plone installation, and that's why you want CalendarX. If you have not
used Plone before and you just want to try CalendarX out, then I'd recommend getting one of the
easy Plone installers (the binary Plone installer for Windows machines works alright for me) and
follow the instructions first, and then come back here.

CalendarX 0.4 branch is a Plone Product. It installs as a Product
 in your Products folder. The instructions below explain this.

I. Software requirements
II. Instructions for Installation for the first time.
III. Re-installing, or upgrading CalendarX

I. Software requirements
Software Requirements for CalendarX (0.4 branch):
 1. Plone 1.0+ along with Python/Zope. Tested on Plone 2.0.5, Zope 2.7.3.
 Not tested yet on Plone 1.0+ but I'm pretty sure it will still work.
Software Options, Suggestions (NOT REQUIRED):
 1. Python 2.2+ (required if AdvancedQuery is used.)
 2. Zope 2.6.2+ (may work on earlier Zopes, but untested. Python 2.2+ is not
 standard until Zope 2.7+)
 3. Plone 2.0+
 4. AdvancedQuery (tested on 0.3+ at this time)
 this is available at Dieter's site:
 http://www.dieter.handshake.de/pyprojects/zope/
 AdvancedQuery is one of two query techniques used. By default, the
 traditional ZCatalog query method is used, but using AQ is simply a
 switch option in the skins property sheet.

II. Instructions for Installation for the first time.

1. Make sure you have the required software and additional Zope Products
 in place.

2. Acquire the CalendarX-0.4.x.tar.gz file from sourceforge. This unzips as
 a tar file, which untars as a single folder, called CalendarX-0.4.x.

3. In your Zope INSTANCE, place this folder in your
 INSTANCE_HOME/Products/ folder and rename the folder to
 /Products/CalendarX instead of /Products/CalendarX-0.4.x.

25 of 61 CalendarX Manual -- Appendix A Installing CalendarX

4. Restart Zope.

5. Go to your Plone portal, and log in as a manager. Go to plone_setup
 and Add New Products. Find CalendarX in the list and check it, and
 click the Install button. This is equivalent to navigating in the ZMI
 to your Plone instance, and using the portal_quickinstaller to install
 CalendarX.

6. IN PLONE: Navigate to where you want a CalendarX instance, and add a
 CalendarX in the normal fashion. Name it "calendar" or whatever you want.
 It creates an "empty" folder, but when you now navigate to it in Plone,
 it will display the Calendar, set to the default view (Month view).
NOTE: CalendarX is *not* an ordinary Plone folder. The folder_listing and
 folder_contents have been disabled. Do attempt to store Plone content
 inside your CalendarX instance. Certain advanced features of CalendarX
 require you to use this folderish behavior to store CalendarX scripts and
 other files within it (such as having multiple calendars on one site, and
 the use of subcalendars). See step #9 below for more information.

7. That's it. Navigate in Plone to your calendar folder and the default
 (month) view should appear. You may then publish (or not) your calendar
 as you wish.

III. Re-installing or upgrading CalendarX.

A. Upgrading from 0.4 branch versions of CalendarX.
B. Upgrading from 0.2 branch versions of CalendarX.
C. Upgrading from 0.1 branch versions of CalendarX.

A. Upgrading to from 0.4 branch versions of CalendarX.

1. Replace the old version of CalendarX in your INSTANCE_HOME/Products
 folder with the new version of CalendarX (0.4 or higher).

2. Restart Zope, or in the ZMI you can go to Control Panel, Product
 Management, CalendarX, and in the Refresh tab, click Refresh. This step is
 necessary to get some parts of CalendarX recompiled.

3. In ZMI, navigate to your Plone root, and go to portal_quickinstaller, and
 reinstall CalendarX. This step is needed to refresh the skins so they know what's
 in the new CalendarX skins folder. Alternatively, in Plone (2.0+), you can go
 to Plone Setup, Add/Remove Products, and under "Installed

26 of 61 CalendarX Manual -- Appendix A Installing CalendarX

 Products", look for CalendarX and click the link that says "This product
 has been upgraded, click here to reinstall." That's just another way (through
 Plone) of accessing the portal_quickinstaller.

4. Any parts of CalendarX that you have customized should be compared with
 fresh versions (and the HISTORY.txt file) to see if there are changes
 that you should be aware of in your customizations. If all you have
 changed are the CX_props_XXX property sheets, then there is little chance
 of any problems.

5. There is not currently, nor immediate plans to create, an automated upgrade
 feature that will migrate your configurations to the new versions of the
 property sheets, etc. This is because CalendarX is designed to allow easy
 TTW access to all the scripts and templates for customization, and any one
 CalendarX installation will be expected to have many customization choices
 that an automated upgrade mechanism will not properly handle. Document the
 changes you make so that you can more easily upgrade to newer versions
 of CalendarX.

6. As you make your own customizations to scripts, page templates or macros
 in CalendarX, you'll see my examples of how you can make comments for any
 changes you make to the code. If you make changes, BE SURE and add
 comments so that you remember in the future what you have done, and you can
 easily find your changes when upgrading time comes. And if you make really
 good changes, TELL US ABOUT THEM!!

B. Upgrading from 0.2 branch versions of CalendarX.
User Question: I looked through all the docs and I don't see any instructions
 on how to migrate from version 0.2.13 to 0.4.3. Since you can't use the
 quickinstaller to remove 0.2.13 from Plone, will 0.4.3 simply overwrite
 0.2.13 or do you have to manually remove files from the file system?

Answer: Ah, migration.
It really isn't much problem, although it is not perfectly transparent.

1. Leave your current (old) calendar in place for now. The two can run
 concurrently if you wish, until the new one is all set up. Or forever (I
 have both running as demos at calendarx.org).

2. All the files for the 0.2.13 branch are stored in the instance folder, so
 they will not interfere with the new one at all. When you're done with
 0.2.13, just delete that folder.

3. Install 0.4.x as per instructions (untar, unzip in /Products, restart
 Zope, use QuickInstaller to add CalendarX to your Plone site. Then (in

27 of 61 CalendarX Manual -- Appendix A Installing CalendarX

 Plone), use the dropdown to add a CalendarX instance to your Plone site.
 Name it whatever you want. You can change the name later in the usual
 Plone way.

4. Customize your CalendarX in approximately the same way that you did before
 (with 0.2.13) except that now it's more Plone-ish... you go to
 portal_skins/CalendarX and find the property sheet that you want to alter,
 hit Customize and then change the Properties in the Properties tab. You can
 likewise customize any of the property sheets, the macros, the templates,
 the scripts. THERE IS NO MECHANISM FOR DIRECT MIGRATION from
 the old 0.2.13 property sheets to the new ones. Most of the properties have the
 same names though, so it should be fairly easy. 10 minutes tops to migrate if all
 your customizing has been in the property sheets.

5. You can leave these property sheets in your /custom folder, or you can use
 the ZMI and cut/paste them into your CalendarX instance folder so that they
 are out of the way.

6. If you want more than one CalendarX instance, you will definitely want to
 use the ZMI and cut/paste your property sheets into the local instance
 folders... that way each calendar has its own look, feel, and behavior (what
 events it locates, etc.).

Hope that helps.

C. Upgrading from 0.1 branch versions of CalendarX.

Ugh. No idea at this moment. Probably a bit like the ones above. Sorry, but
 write me if you are having trouble. Don't upgrade, just replace the olde
 one and start fresh.

28 of 61 CalendarX Manual -- Appendix B Property Sheets

Appendix B: Guide to property sheets in CalendarX

 Property sheets are the tools that allow calendar administrators to configure CalendarX
easily, without touching the source code. Easy access to these properties allows a great deal of
flexibility in how CalendarX looks and what events it displays. Here is a guide to each of the
properties associated with the property sheets, what you can accomplish with it and how to set it
properly.

Administrators: Changing the properties associated with each property sheet is best
performed in the usual Zope/Plone way... navigate in the ZMI to your /portal_skins/CalendarX
folder and click on the name of the property sheet of interest to take you to a view of the
properties on the sheet. Then click the button to "customize" that property sheet, which will
place a copy of the property sheet in the /custom folder. To change property values, click on the
Properties tab of the property sheet, and adjust values as desired, then click the Save Changes
button at the bottom of the page.

 If there are multiple CalendarX instances in a portal, then a property sheet in the /custom
folder will override default values established in the filesystem. If different settings are required
for just one CalendarX instance, then a copy of the appropriate property sheet can be placed
inside the desired CalendarX folder (using the ZMI top copy/paste the property sheet there).

Developers: Property sheets are found in the /Products/CalendarX/skins/CalendarX folder of
your distribution.
 Officially, these property sheets are objects of a CMF class called FSPropertySheets (File
System Property Sheets). The FSPropertySheet class currently (as of Zope 2.7.3) has
deficiencies in its ability to handle lines and text properties, so CalendarX patches the methods
used to handle these using the so-called "monkey patch" method so that FSPropertySheets can
use lines and text properties. The monkey patch can be examined in the __init__.py file (the
part that says "fixing the 'lines' property for CMF FSPropertiesObject"); this monkey patch
provides the bulk of the __init__.py code.

 If you want to change the default settings for CalendarX for your entire portal, or for all
your portals (if running more than one Plone on your server), you can change the settings in the
FSPropertySheets in the CalendarX folder in your INSTANCE_HOME/Products folder. Then
all instances of CalendarX reading from that /Products folder will receive those defaults, unless
overridden locally as described above in the Adminstrator’s section.

Overview: Here are the names and basic function of the property sheets. The remainder of this
appendix will cover details of the properties of each sheet in this order. I've described these in
alphabetical order, but #2 (CX_props_calendar) is the most commonly used one.

1. CX_props_addeventlink: If you wish to have an "Add New Event" link
 displayed in the subject bar, configure the link here.
2. CX_props_calendar: controls most basic calendar functionality, including

29 of 61 CalendarX Manual -- Appendix B Property Sheets

 what types of events are shown, how the Subject bar is displayed, etc.
3. CX_props_css: provides many opportunities for changing the colors and
 fonts displayed in the calendar.
4. CX_props_custom: does nothing. If you add new functionality to your
 calendar and need properties, put them in here.
5. CX_props_eventdisplays: allows you to use different icons and CSS classes
 based on the Subject of each event.
6. CX_props_popup: checkboxes to select which text is displayed in the
 rollover text box associated with each event displayed in the calendar.
7. CX_props_subcalendar: If you have subcalendars beneath your main calendar,
 you will need to configure them here.

1. CX_props_addeventlink

The "Add New Event" link is a means of making it easier for calendar users
 to add new events to your calendar. It places a link in the SubjectLinks
 bar that takes users to an appropriate place to add events. Because there
 are many places/ways that Plone allows you to add events, we've provided
 several options for how to control who gets what link. Your suggestions
 (and code) for more options are gratefully accepted.

=== List of Attributes ===
title string
 Leave this title attribute alone.

showAddEventLink boolean
 Check this to include an "Add New Event" link in the SubjectLinks bar.

 Controls for this link are below. If more than one of the boolean
 controls below are checked, the ones below will take priority over the ones
 above. For example, if both useANEFolder and useRolesAndFolders are
 checked, but the current user does not have one of the specified Roles,
 then the link target will fall back to the specified ANEFolderPath. The
 order of these priorities is determined by the code in the Python script
 "getAddNewEventURL". If no match is found, then a blank string will be
 returned to the macro, and a condition there will cause NO "Add New Event"
 link to be shown. This way you can restrict display of this link to only
 certain users or to users with certain roles. The first two choices
 (useMemberFolder and useANEFolder) are shown to all Authenticated users, if
 selected.

useCreateObjectOnClick boolean
createObjectOnClickCommand string
 Together, these two properties tell the link to instantiate a new Event

30 of 61 CalendarX Manual -- Appendix B Property Sheets

 object in the target folder. Check this if you want to have the link
 automatically initiate editing of a new event for the user. Uncheck this
 property if you want the Add New Event link to simply take the user to a
 target folder without starting a new Event object automatically.

 The createObjectOnClickCommand string is the command that is carried in
 the query string of the link's URL target if you are using the
 useCreateObjectOnClick property. The default string is:

 createObject?type_name=Event

 which will create a new CMF Event object in the target folder of the link.
 If you have a different event type that you would like to create, replace
 the meta_name "Event" with the appropriate meta_name of your desired
 event type.

 If you use this feature, it is advisable to also set your portal to use the
 portal_factory for initiating Events, so that if a user clicks on the link
 to start a new event but then decides not to finish it, the event will not
 be abandoned half-finished. Portal_factory will simply create a temporary
 version and then delete it if left unfinished by the user.

useMemberFolder boolean
 Check this so that the link will take users to their default Member folder
 where they can add Events.

useMemberSubfolder boolean
memberSubfolderPath string
 Check this property if you want events to be instantiated in a subfolder of
 a user's Member folder. For example, if all your users are musicians in
 bands (or groupies perhaps) and they post their band gigs on the calendar,
 then you might want all the events to be saved in a specific subfolder, such
 as "/Members/username/gigs". The proper format for the target folder is
 relative to the /Members/username folder and should start with a slash, e.g.:
 "/gigs"
 NOTE: ONLY use this if you are certain that users WILL have the named
 subfolder in their user folder. Otherwise it will return 404, page not
 found error, or something closely related.

useANEFolder boolean
ANEFolderPath string
 Together, these allow you to specify a single folder that will be the target
 of the link. The proper format for the target folder is relative to the
 portal_root and should start with a slash, e.g.:
 "/somefolderintheroot/thefolderforevents"

31 of 61 CalendarX Manual -- Appendix B Property Sheets

useUsersAndFolders boolean
listOfUsersAndFolders lines
 Together, these allow you to specify a combination of a username and a
 corresponding single folder that will be the target of the link for that
 specific user. The proper format for each line is as follows:
 "username|folderpath"
 where the "pipe" character (a vertical slash) is used as a separator between
 the username and folder path. The proper format for the target folder is
 relative to the portal_root and should start with a slash, e.g.:
 "/somefolderintheroot/thefolderforevents"

 An example with two possible role|folder lines:
 lupa|/calendar/specialevents
 davos|/calendar/drearyevents

 If no matching username is found, the priority rules described above will
 take over to find a suitable target for the user.

useRolesAndFolders boolean
listOfRolesAndFolders lines
 Together, these allow you to specify a combination of a Role and a
 corresponding single folder that will be the target of the link for all
 users with that Role. The proper format for each line is as follows:
 "rolename|folderpath"
 where the "pipe" character (a vertical slash) is used as a separator between
 the role name and folder path. The proper format for the target folder is
 relative to the portal_root and should start with a slash, e.g.:
 "/somefolderintheroot/thefolderforevents"

 An example with two possible role|folder lines:
 Manager|/calendar/specialevents
 Member|/calendar/ordinaryevents

 The lookup stops when a matching role is found for the user. For example,
 if the Manager logs in, the link for the Manager will target the folder
 called "specialevents", even though the Manager is also (likely) a Member
 of the site. If no matching role is found, the priority rules described
 above will take over to find a suitable target for the user.

2. CX_props_calendar

CX_props_calendar controls most basic calendar functionality, including
 what types of events are shown, how the Subject bar is displayed, and

32 of 61 CalendarX Manual -- Appendix B Property Sheets

 many other attributes of the calendar's look and feel.

=== List of Attributes ===
title string
 Leave this title attribute alone.

dayOfWeekToStart int
 Value indicates what day of the week the Month and Week
 views begin on. Sunday = 0, Monday = 1, etc.

defaultView string
 Name of the default view to be displayed: month, weekbyday,
 weekbyhour, or day.

useAdvancedQuery boolean
 If checked, CalendarX will use the AdvancedQuery product
 for making queries to the catalog to find events. Use
 this if you want to override those query methods in your
 skin folder. I find AdvancedQuery significantly easier
 to use in building complex queries, but it offers no
 other advantages for general use in CalendarX.

dayViewStartHour string
 Hour of day for CalendarX to BEGIN display for day view and
 for weekbyhour view. 8 = 8am = 08:00, 20 = 6pm = 20:00.
 For a 24 hour calendar, set this to 0 (zero).

dayViewEndHour string
 Hour of day for CalendarX to END display for day view and
 for weekbyhour view. 8 = 8am = 08:00, 20 = 6pm = 20:00.
 Must be later than dayViewStartHour.
 For a 24 hour calendar, set this to 24.

hoursDisplay string
 Code to tell the "hoursdisplay" macro how to display the
 hours in your calendar views. Currently two possibilities
 and they only affect the left column display of hours:
 "12ampm" = 12 hour display, with am or pm. Ex. 6 pm
 "24.00" = 24 hour display, with period. Ex. 20.00

showHighlightFullEvent boolean
 If checked, CalendarX will show the full extent of Events on
 the calendar, even without rolling over with the mouse.
 Default is a blue color, can be changed in CSS property sheet.

 NOTE! If you use this, you might also want to disable the

33 of 61 CalendarX Manual -- Appendix B Property Sheets

 labelEventsOnlyAtStart property. Disabling labelEventsOnlyAtStart means
 that the events in the Month view that span several days will show
 labels for each of those days, instead of only on the first day of
 the event.

showJumpToDateWidget boolean
 If checked, a date-picking widget will show up at the top
 and bottom of the calendar near the Next/Previous links.
 This widget lets users pick a date and jump to it, instead
 of using multiple Next, Next, Next click, or manually typing
 the date into the URL querystring.

useNumericMonthInJumpToDateWidget boolean
 If checked, the Jump-To-Date widget will show a numeric month value (ex. "2")
 instead of an abbreviation of the month (ex. "Feb"). These abbreviations
 are pulled from the python DateTime module, not coded into CalendarX code,
 in the getMonthName.py script.

showPublicPrivateLink boolean
 If checked, the *Public* vs *My Events* link will be shown in
 the Subject Bar. This link allows users to switch between
 viewing all the published events, or ONLY their own private
 events. If your calendar is mainly for viewing by anonymous
 users, you probably don't need this. Default is OFF because
 this is a nice feature, but not a commonly chosen one.

useMultiSubjects boolean
 If checked, the Subject category picker is a checkbox-style
 form, allowing users to select multiple subjects for viewing.
 If unchecked, it switches to (an older) single subject chooser
 that only allows one Subject category at a time. Default is ON
 for this new-style Multi-Subject chooser, because it is ever
 so much nicer.

showSubjectBar boolean
 If checked, the Subject bar is shown, and if unchecked, it will
 disappear from view. Default is ON. Decomplicates the calendar
 if you don't want to use Public/Private or Subject categories.

useCalendarHelp boolean
 Check this attribute to show a View tab for "Calendar Help". This brings
 up a new view page that is intended for you to use for help in case you
 have neophyte users who could use some calendar help. I've added some
 code that brings up one page of help for "Members" and a different page
 of help for "Anonymous" users. This could easily be extended to show

34 of 61 CalendarX Manual -- Appendix B Property Sheets

 different help screens for other Roles. See the "help" view page
 template for more information. The help text is quite minimal, so feel
 free to expand it for your users. Feel free to send me a copy of your
 nice help files, too!

includeReviewStateVisible boolean
 Check this attribute to include events where the review state is
 'visible' as well as 'published'. This is useful for calendars where
 the only users are trusted users and going through the publishing
 workflow only adds unnecessary complication.

 In particular, this could work well even on a site with many
 untrusted users. In that case, create a calendar for the trusted
 users that uses a repurposed Event with a new portal_type name.
 Use the 'restrictToThisListOfTypes' attribute to make this new
 calendar ONLY read this one type of Event. Then use a
 getNotAddableTypes.py script to restrict the use of this type of
 Event to your trusted users (as a role, or a group, or whatever).
 See the HowTo on plone.org for use of getNotAddableTypes.

showPendingLink boolean
 Check this attribute to show a link in the subjectbar that, when clicked,
 tells the calendar to display events with "pending" state as well as the
 other events (published, and visible if includeReviewStateVisible has been
 selected). The link is not a toggle; to get out of the mode where the
 pending events are showing, simply click any other link on the calendar.

 This link ONLY shows up for Calendar Managers. Who is a Calendar Manager?
 User status as a Calendar Manager is determined by the isCalendarManager.py
 script. It is easily customized, but as a default is set to allow users
 with the "Manager" role. If this role is adequate for you, leave this
 script as is. An example is included in the script to show how to look up
 group membership to determine Calendar Manager status.

showOnlyEventsInMonth boolean
 Check this attribute to restrict the Month view to display events ONLY in
 the current calendar month, and NOT those events that occur in the days
 before or after the month begins and ends (ie., if the month view shows the
 30th and 31st of the previous month on the calendar, events will NOT be
 displayed for those dates.

35 of 61 CalendarX Manual -- Appendix B Property Sheets

labelEventsOnlyAtStart boolean
 Check this attribute to put labels on the month view ONLY on the first day
 of an event that lasts multiple days. Default is SELECTED. Unselect this
 attribute if you'd like the event title and datestring to appear on each
 calendar day that the event is on (ie., a four day event will have the label
 show up on the calendar four times, on each of the four days of the event).

 NOTE! Disabling this (to show events on EVERY day) will only work if the
 showHighlightFullEvent property is turned ON (selected). It would make no
 sense (to me) to have the event labeled, but not highlighted. So make sure
 you use these together. No harm if you don't, but it won't behave the way
 you might have expected. It pays to read the documentation.

listOfSubjects lines
restrictToThisListOfSubjects boolean
 Together, these two attributes allow you to control the choice
 of what categories of events to display on your calendar.

 List of the Subjects in your CalendarX, for use in
 creating the macro that displays them on your calendar.
 1. LEAVE "listOfSubjects" BLANK, if you want to just use the
 list of Subjects that is available from already created Events
 your Plone site.
 2. LIST SUBJECTS ONE PER LINE, exactly as they are present
 in your portal_metadata, in the order you want them
 displayed. The default values included here are the default
 values that come with CMF Event and AT Event types.

 If "restrictToThisListOfSubjects" is checked, a query for "ALL"
 subjects is restricted to the Subjects in your listOfSubjects
 attribute.
 If unchecked, "ALL" will return all events found, regardless
 of their Subject.
 Use of this feature allows you to segregate certain events
 pertaining to certain Subjects to unique calendarx instances.
 This also means that if checked, the calendar WILL NOT pick up
 events that do not have a Subject selected.

 ADVANCED FEATURE: Each line in the listOfSubjects can also be a
 Comma-Separated-Values list (CSV) where each line becomes a list
 of subjects for viewing. This becomes very useful in the case
 where you have many Subjects, but would like to combine several of
 them at a time and use a Nickname (or abbreviation, or acronym)
 to show up in the Subject menu.
 For example: In a calendar for a school with five grade levels, and

36 of 61 CalendarX Manual -- Appendix B Property Sheets

 four classes of children in each grade level, you could try something
 like this in your listOfSubjects:
 Class1a,Class1b,Class1c,Class1d
 Class2a,Class2b,Class2c,Class2d
 Class3a,Class3b,Class3c,Class3d
 Class4a,Class4b,Class4c,Class4d
 Class5a,Class5b,Class5c,Class5d
 and then use this in the listOfSubjectTitles below:
 Class 1
 Class 2
 Class 3
 Class 4
 Class 5
 In this way, your subject menu is less cluttered, but it is easy for your
 users to check one of these to filter and see only the events for children
 of Class 1 age. You may also want to use SubCalendars with this, so that
 users can drill all the way down and see ONLY events associated with
 Class1c, Class4b, etc.

eventTypes list
restrictToThisListOfTypes boolean
 Together, these two allow you to restrict what types of content objects
 will be picked up on your calendar. Put one portal_type per line in
 the eventTypes attribute, and check "restrictToThisListOfTypes" if
 you wish this feature to be activated. If unchecked, no check is done
 on the Type index, regardless of the content of the eventTypes attribute.
 Usage: For example, this feature means you can create a new
 Event type for certain users, and then use getNotAddableTypes.py to
 restrict which users can add those special Event types, which gives even
 more control over different calendar instances in your Plone site.

 This is very useful in subcalendars, where each subcalendar may have a
 different event Type.

listOfPaths list
restrictToThisListOfPaths boolean
 Together, these two allow you to restrict where (the paths) to event
 content objects that will be picked up on your calendar. This means
 you can restrict viewing to Events found in certain folders. To use this
 feature, use a full path exactly as found in your path index. An example:

 /clients/companyplonesite/Members/fred
 /clients/companyplonesite/staff

37 of 61 CalendarX Manual -- Appendix B Property Sheets

 These two paths represent folders where Events can be stored that will
 show up on the calendar, if restrictToThisListOfPaths is checked. ONLY
 those events in these two paths will be found. Events in fred's personal
 folder and events in the staff folder, and any folders deeper than that
 will be picked up for display on this calendar. For example, if there is
 a meetings folder inside the staff folder, events inside that folder will
 also be displayed. If you are having any trouble with this property,
 please go to the portal_catalog, click on the Catalog tab, and find one
 of the events that *should* show up on the calendar. Look near the bottom
 of the page to see what path is being indexed by the "path" index, and use
 that as the path to the folder that you will use in listOfPaths.

restrictToThisFolder boolean
 This property restricts the calendar so that events are ONLY shown if they
 are found within or beneath the parent folder of the CalendarX instance.
 Example: add a CalendarX instance as /Members/lupa/cal. If you set this
 property to true, then only events found within /Members/lupa and any
 subfolders therein will be shown on this calendar instance.
 This could also be accomplished manually with the restrictToThisListOfPaths
 property, but this property helps in the special case where you want to
 allow your users to create a private calendar for their own area. In
 that case, you should probably set this property to "1" in the property
 sheet on the filesystem, so that all calendars created by your users will
 have this property by default.
 ADVANCED NOTE: as currently implemented, the restrictToThisFolder option
 trumps (overrides) the similar restrictToThisListOfPaths property. In
 other words, in the four query scripts, the restrictToThisListOfPaths
 property is evaluated first, and if restrictToThisFolder is also selected,
 the second one (restrictToThisFolder) takes precedence and overrides the
 first property. To change this precedence, simply go into these query
 scripts and rearrange the two-line calls for each one so that their order
 is reversed.

listOfSubjectTitles list
useSubjectTitles boolean
 Together, these two attributes allow you to use sensible (e.g., shorter)
 titles on the Subject Bar for your Subject categories. If your Subject
 category names are long, three or four subjects can produce an unwieldy
 list for your users to select from. Instead, use these attributes to
 include a list of shorter titles for each of your Subjects.

 IMPORTANT Be sure to use this feature in conjunction with the
 "listOfSubjects" attribute above. Be certain that both lists have the

38 of 61 CalendarX Manual -- Appendix B Property Sheets

 exact same number of entries, so that there is a single corresponding
 SubjectTitle for each Subject. If these do not match, the calendar may
 show an error. Simply test your calendar after any changes to this
 attribute to be certain that your calendar is working without error.

3. CX_props_css

CX_props_css controls the many adjustments that you can make to control
 the colors and fonts for displaying text in various parts of the calendar.
 These properties are used in the calendar.css and other CSS files.

Use the Properties tab to adjust the colors and fonts and
 such throughout the calendar.css and other CSS files.

Default values (include below) are set to nearly match those of a
 stock Plone 2.0.x install. Or if not match, at least nicely
 complement. It isn't perfect, but overall things work OOTB.
 The font sizes are all in percentages instead of fixed sizes,
 so that the calendar fonts can resize with the rest of the Plone
 site if the small Normal LARGE style-sheet widget is used.

=== List of Attributes ===

title string
 Don't mess with this title. Leave it alone. [actually, I don't care.]

**** Section 1: ****
VIEW: These attributes control aspects of the "view" tabs,
 (month, week, day, etc. view template names) right at the top
 where you choose which view of the calendar is showing.

viewTabsBorderColor default = #8cacbb
 View tabs border color.

viewTabsBackgroundColor default = #dee7ec
 View tabs background color.

viewFontBaseSize default = 95%
 View tabs font size.

viewFontFamily default = "Lucida Grande", Verdana, Lucida, Helvetica, Arial, sans-serif
 View tabs font family.

viewTabsFontColor default = #436976
 View tabs font color.

39 of 61 CalendarX Manual -- Appendix B Property Sheets

**** Section 2: ****
Subject Bar: These attributes control aspects of the subject bar,
 where the Private/Public and MetaCalendar Subject choices are
 found.

subjectBarBorderColor default = #8cacbb
 Color of the border around the subject bar, set in
 calendar.css. Also goes around the My:Public choices.

subjectBarBackgroundColor default = #dee7ec
 Color of the background for subject bar and My:Public bar.

subjectFontFamily default = "Lucida Grande", Verdana, Lucida, Helvetica, Arial, sans-serif
 Font family for the subject bar and My:Public bar.

subjectFontSize default = 97%
 Font size for the subject bar and My:Public bar.

subjectBarFontColor default = #436976
 Font Color for the for subject bar and My:Public bar.

**** Section 3: ****
Header: These attributes control aspects of the header area,
 where the previous and next date arrows, and the calendar date
 are displayed, at the bottom and top of the calendar. Code for
 this is generated in the "prevnextcurrentlinks" macro.

headerCenterFontSize default = 135%
 "July 2004" header font size.

headerSideFontSize default = 93%
 "previous" and "next" links font size.

headerFontFamily default = Verdana, Helvetica, Arial, sans-serif
 Font Family name for "prevnextcurrentlinks" macro (prev, next, date header, footer)

headerFontColor default = #436976
 Color of the font for header.

headerHeight default = 35px
 Height added to base for "prevnextcurrentlinks" macro (prev, next, date header, footer)

headerMarginBottom default = 15px
 Bottom margin pixels for "prevnextcurrentlinks" macro (prev, next, date header, footer)

40 of 61 CalendarX Manual -- Appendix B Property Sheets

headerMarginTop default = 5px
 Top margin pixels for "prevnextcurrentlinks" macro (prev, next, date header, footer)

**** Section 4: ****
Continuing: These attributes control aspects of the Continuing
 Events section, where events that start before or extend across
 the entire period of view are shown.

continuingHeaderFontSize default = 90%
 Continuing events box, header font size

continuingHeaderFontFamily default = Verdana, Helvetica, Arial, sans-serif
 Continuing events box, header font family

continuingOuterBorderColor default = #B3CFD9
 Continuing events box, outer border color

continuingOuterBorderWidth default = 1px
 Continuing events box, outer border width

continuingHeaderBorderColor default = #436976
 Continuing events box, inner border color

continuingHeaderBorderWidth default = 1px
 Continuing events box, border width

continuingHeaderBackgroundColor default = #8CACBB
 Continuing events box, background color

continuingRowEventBackgroundColor default = #DEE7EC
 Continuing events box, color if an event is present

continuingRowNoEventBackgroundColor default = #F7F9FA
 Continuing events box, color if no event

continuingRowHeight default = 5px
 Continuing events box, row height, added to event bottom

**** Section 5: ****
Cal: These attributes control aspects of the Main Calendar display.

***CONTROL OF THE MAIN CALENDAR
calBorderColor default = #B3CFD9

41 of 61 CalendarX Manual -- Appendix B Property Sheets

 Main calendar, border color

calBorderWidth default = 1px
 Main calendar, border width

***CONTROL OF THE TR TAGS
calTableRowOddBackgroundColor default = #F7F9FA
 Main calendar, for certain views where odd/even vary in color,
 this controls the ODD row (in TR tags).

calTableRowEvenBackgroundColor default = #DEE7EC
 Main calendar, for certain views where odd/even vary in color,
 this controls the EVEN row (in TR tags).

***CONTROL OF THE TH TAGS
calTableHeaderBackgroundColor default = #8CACBB
 Main calendar, TH tags background color.

calTableHeaderBorderColor default = #436976
 Main calendar, TH tags border color.

calTableHeaderBorderWidth default = 1px
 Main calendar, TH tags border width.

calTableHeaderFontColor default = #FFFFFF
 Main calendar, TH tags font color.

***CONTROL OF THE EVENT FONTS
calEventFontSize default = 85%
 Main calendar, TH tags font size.

calEventFontFamily default = Verdana, Helvetica, Arial, sans-serif
 Main calendar, font family for the event listings.

calEventPendingTextColor default = #436976
 Main calendar, text color for the pending event listings.

calEventPrivateTextColor default = #821513
 Main calendar, text color for the private event listings.

calEventPublishedTextColor default = #466A06
 Main calendar, text color for the published event listings.

42 of 61 CalendarX Manual -- Appendix B Property Sheets

calEventVisibleTextColor default = #436976
 Main calendar, text color for the visible event listings.

***CONTROL OF THE TD TAGS (daily cells in the month view, etc)
calTableDataFontColor default = #000000
 Main calendar, TD tag text color, but I don't know if it
 actually controls anything at this time.

calTableDataBorderColor default = #DEE7EC
 Main calendar, TD tag border color.

calTableDataBorderWidth default = 1px
 Main calendar, TD tag border width.

calTableDataNoEventBackgroundColor default = #F7F9FA
 Main calendar, color when a cell has NO EVENT

calTableDataEventBackgroundColor default = #DEE7EC
 Main calendar, color when a cell has an EVENT

calTableDataOutOfMonthBackgroundColor default = #FFFFFF
 Main calendar, in the MONTH view when the day shown is NOT
 a part of the month, this controls the background color.

calTableDataOutOfMonthBorderColor default = #F7F9FA
 Main calendar, in the MONTH view when the day shown is NOT
 a part of the month, this controls the border color.

calTableDataOutOfMonthBorderWidth default = 1px
 Main calendar, in the MONTH view when the day shown is NOT
 a part of the month, this controls the border width.

calTableDataSpanDayFontColor default = #000000
 Main calendar, in the MONTH view, text color of the date
 (ie., "3" on June 3 cell).

calTableDataHeightMonthView default = 105px
 Main calendar, in the MONTH view, this controls the empty
 height of a daily cell.

calTableDataHeightDayView default = 35px
 Main calendar, in the DAY view, this controls the empty
 height of a daily cell.

calTableDataHeightWeekbydayView default = 105px

43 of 61 CalendarX Manual -- Appendix B Property Sheets

 Main calendar, in the WEEKBYDAY view, this controls the empty
 height of a daily cell.

calTableDataHeightWeekbyhourView default = 30px
 Main calendar, in the WEEKBYHOUR view, this controls the empty
 height of a daily cell.

calTableDataFontSizeHour default = 130%
 Main calendar, in the DAY and WEEKBYHOUR views, this controls
 the font size of the HOUR displayed (ie., "8am" or "13:00")

4. CX_props_custom

CX_props_custom is an empty property sheet that you can
 use to add new properties if you are a developer customizing
 CalendarX. By using this sheet, rather than adding new properties
 to the existing sheets, you should find it easier to upgrade to new
 versions of CalendarX because your special settings will be here,
 rather than in one of the new, updated property sheets of the new
 CalendarX version. The CX_props_custom property sheet will
 always be empty in the CalendarX distribution.

=== List of Attributes ===

title string
 Don't mess with this title. Leave it alone. [actually, I don't care.]

[that's all. add new properties yourself inside this property sheet.]

5. CX_props_eventdisplays

Use the Properties tab to adjust the attributes of the Event as displayed
 on the calendar views. These properties control the icons available for
 display and also the CSS classes. You can choose to control icons and
 CSS classes according to the Subject of the Event, or according to the
 Type of the Event.

=== List of Attributes ===

title string
 Leave this title attribute alone.

useSubjectIcons boolean
listOfSubjectIcons lines

44 of 61 CalendarX Manual -- Appendix B Property Sheets

 If checked, this will cause the views to choose an icon for each event
 based on the Subject names found in the list. The list consists of a lines
 attribute where each line consists of a Subject and an icon ID, separated
 by a pipe (|) character. For example:

 Work|event_work_icon.gif where Work is the subject.

 Your subject names should (must!) match the actual subjects you use for
 your events, or this method will not work well. Actually, it will just
 pull the default event_icon.gif from the Plone skin if there is any
 problem finding a matching subject name or icon ID.

 This property is handy for making your events more visibly recognizable in
 your calendar page. The default icon size is 16x16 pixels, with some
 white (or clear) pixel space on the right and left sides. I haven't tested
 it with larger icons, but keeping to a modest size might be a good idea.

 Add your event icons into your /portal_skins/custom folder, or put them
 directly into your calendar instance folder for (slightly) better
 performance.

useSubjectCSSClasses boolean
listOfSubjectCSSClasses lines
 If checked, this will cause the views to choose a CSS class for each event
 based on the Subject names found in the list. The list consists of a lines
 attribute where each line consists of a Subject and a CSS class name,
 separated by a pipe (|) character. For example:

 US Holiday|event_usholiday where Work is the subject, and
 event_usholiday is the CSS class name.

 Your subject names should (must!) match the actual subjects you use for
 your events, or this method will not work well. Actually, it will just
 pull the default event_published CSS class from the Plone skin if there is
 any problem finding a matching subject name or icon ID.

 This nicely allows you to apply styles like font color to your event
 listings according to the Subject of the event. Put your custom styles
 into your calendar.css stylesheet, or into a customized version of the
 ploneCustom.css stylesheet if you prefer (the sample ones I've created for
 default use are found in calendar.css). An example of a CSS class listing
 I used to use a blue text color for the "Appointment" event subject:

A.event_appointment {
 COLOR: #0000CC;

45 of 61 CalendarX Manual -- Appendix B Property Sheets

 TEXT-DECORATION: none;
}
A.event_appointment:hover {
 COLOR: #0000FF;
 TEXT-DECORATION: none;
}

 Additionally, if you want the Subjects in the Subject listing at the top of
 the calendar to reflect these same CSS classes, you have to add these too.
 Example ones (for Appointment, etc.) are in calendar.css for you to
 customize. They are in a SPAN tag and look like this:

TABLE.caltabs TD.barright2 SPAN.event_appointment {
 COLOR: #0000CC;
 TEXT-DECORATION: none;
}

 *** ONE MORE NOTE about these. Make sure in your listOfSubjectCSSClasses
 and listOfSubjectIcons lines properties that you use the actual SUBJECT
 name and not any Subject nicknames you might use for display (as defined
 in the listOfSubjectTitles property in CX_props_calendar. Those labels
 won't work here, only the actual subject will work.

 *** AND ONE MORE NOTE. The following two properties (useEventTypeIcons
 and useEventTypeCSSClasses) take precedence over useSubjectTypeIcons
 and useSubjectCSSClasses if, for unknown reasons, BOTH have been selected.
 There's no real reason to select both... only one can work at a time,
 and I chose to make the EventType ones take priority. Go figure.

useEventTypeIcons boolean
listOfEventTypeIcons lines
 If checked, this will cause the views to choose an icon for each event
 based on the Event Type (portal_type). The list consists of a lines
 attribute where each line consists of an Event Type and an icon ID,
 separated by a pipe (|) character. For example:

 Event|event_icon.gif where Event is the portal_type.

useEventTypeCSSClasses boolean
listOfEventTypeCSSClasses lines
 If checked, this will cause the views to choose a CSS class for each event
 based on the Event Type (portal_type). The list consists of a lines
 attribute where each line consists of a Subject and a CSS class name,
 separated by a pipe (|) character. For example:

46 of 61 CalendarX Manual -- Appendix B Property Sheets

 AT Event|atevent_class where AT Event is the portal_type, and
 atevent_class is the CSS class name.

6. CX_props_popup

Use the Properties tab to adjust the attributes of the
 rollover PopUp text that displays when you rollover each
 event displayed on the calendar. Just check off the ones
 that you want to show up.
Technical Note: These values represent the metadata that are stored in
 the portal_catalog for each event. If you want to display other
 information about the event that is NOT in the metadata, you can
 read the howto on the CalendarX.org website that explains how
 you can add other attributes as well.

=== List of Attributes ===
title string
 Leave this title attribute alone.

showPOPTitle boolean Checked = Show this info.
 Whether to show the "Title" of the event.

showPOPType boolean Checked = Show this info.
 Whether to show the "Type" string, telling what type of
 event object is showing up in the calendar.

showPOPSubject boolean Checked = Show this info.
 Whether to show the "Subject" of the event. Currently
 implemented to show all the Subjects that are associated
 with an event -- because events can have more than one
 Subject selected.

showPOPStart boolean Checked = Show this info.
 Whether to show the "Start" date and time of the event.

showPOPEnd boolean Checked = Show this info.
 Whether to show the "End" date and time of the event.

showPOPCreator boolean Checked = Show this info.
 Whether to show the "Creator" (Plone username) for
 this event.

showPOPCreated boolean Checked = Show this info.
 Whether to show the "Created" date of the event.

47 of 61 CalendarX Manual -- Appendix B Property Sheets

showPOPModified boolean Checked = Show this info.
 Whether to show the "Modified" date of the event, when
 the last time this event was edited.

showPOPState boolean Checked = Show this info.
 Whether to show the review "State" of the event, such as
 published, visible, etc.

showPOPDescription boolean Checked = Show this info.
 Whether to show the "Description" of the event.

7. CX_props_subcalendar

Subcalendars allow for interesting possibilities for special calendars,
 especially very busy ones. A subcalendar is a folder inside (nested) in
 a Main calendar folder. I have only tried a single level of nesting (one
 main calendar with multiple subcalendars), and these controls focus on
 menu behavior reflecting that use case.
The properties in this sheet control the basic behavior of subcalendars.
 The first two properties are used by the main calendar, and the
 second two are used by subcalendars. These properties have been developed
 with a Resource Scheduling calendar application in mind, but other
 possibilities are certainly possible. Your suggestions (and code) for
 more options are gratefully accepted.
ALSO: You will need to carefully consider what properties to use in your
 CX_props_calendar property sheets for both the MAIN and SUB calendars.
 Examine the Resource Scheduling calendar example provided in order to see
 what some of the possibilities are.

=== List of Attributes ===
title string
 Leave this title attribute alone.

useSubCalendarSubjectMenu boolean
For MAIN Calendars: Check this property to signal that (1) there are
 subcalendars below and (2) hence, use the special Subcalendar Menu for
 the Subject Links that allows you to both (either) filter on the
 subcalendars as well as click on the Subject (subcalendar name) to drill
 down and view that subcalendar alone.

48 of 61 CalendarX Manual -- Appendix B Property Sheets

listOfSubCalendars lines
 For MAIN Calendars: This is a list (one per line) of the names of the
 subcalendars. The menu choices uses this list for display of links to the
 subcalendars.

isSubCalendar boolean
 For SUB Calendars: Check this property if this calendar folder is a
 subcalendar. This controls the style of menu displayed for subcalendars
 versus non-subcalendars.

nameOfSubCalendar string
 For SUB Calendars: The name of this subcalendar. This is displayed in the
 Subject Links area.

49 of 61 CalendarX Manual -- Appendix C Python Scripts

Appendix C: Guide to python scripts in CalendarX

 Python scripts perform the bulk of the logic in handling calendar queries, manipulation of
objects, and so on. A Python script is conveniently customizable by Developers from within the
ZMI, or they can be customized on the filesystem. For example, if desired a Developer can
create a customized filesystem version of CalendarX complete with changes to the Python scripts
that control where and how the queries are made to find events for the calendar. Then any (all)
CalendarX instances within the portals using this custom CalendarX product will utilize the
custom queries. If the Developer wants one instance of CalendarX to use a different version of
the query script, then by simply placing a customized version of the desired Python script inside
the CalendarX folder, this local script instance inside the CalendarX folder will override the
default behavior and use the new Python code instead.

 We'll start with (1) a full listing of all the Python scripts used in CalendarX, followed by
(2) examination of how a page template uses one Python script to return values, and then (3,4,5)
we'll take a closer look at a couple of the CalendarX Python scripts and see how they work. By
examining them closely you can see how queries are assembled before calling the portal_catalog,
and you can learn how we call the CalendarX property values out of the property sheets and
macros out of other page templates.

1. Alphabetical listing of Python scripts in CalendarX, with brief job descriptions:
getAddNewEventURL.
 Returns a URL for the Add New Event link based on property sheet values
getCXAttribute
 Returns an attribute (property) from the appropriate CalendarX property sheet.
getCXEventsBefore
 Chooses which means of querying the catalog for Events before a given date.
getCXEventsBetween
 Chooses which means of querying the catalog for Events between two dates.
getCXMacro
 Returns a path to the macros from within the CalendarX default skin property sheets.
getDaysOfMonth
 Returns the number of days in a given month.
getDaysOfTheWeek
 Returns list of names of the seven days of the week, in a proper order for use on
 the calendar month view, or week view. Starting day is set in CX_props_calendar.
getDictCommon
 Returns a dictionary of useful objects for the calendar views
getDictDay
 Returns a dictionary of useful objects for the Day view
getDictMonth
 Returns a dictionary of useful objects for the Month view
getDictWeekbyday
 Returns a dictionary of useful objects for the Weekbyday view
getDictWeekbyhour

50 of 61 CalendarX Manual -- Appendix C Python Scripts

 Returns a dictionary of useful objects for the Weekbyhour view
getEndOfDay
 Returns a DateTime object for the end of the Day view showing on the calendar
 (defaults to one second before midnight). Hour range: 1-24.
getEndOfMonth
 Returns a DateTime object for one second before midnight on last day of the Month
getEndOfWeek
 Returns a DateTime of the last second of the day of the end of the calendar week.
getEventDictDay
 Returns a dictionary of useful objects for Events for the Day view
getEventDictMonth
 Returns a dictionary of useful objects for Events for the Month view
getEventDictWeekbyday
 Returns a dictionary of useful objects for Events for the Weekbyday view
getEventDictWeekbyhour
 Returns a dictionary of useful objects for Events for the Weekbyhour view
getEventIcons
 Returns an icon object from the skin based on the Subject or Event Type
getEventsBeforeAQ
 Queries catalog to retrieve events between two dates using AdvancedQuery.
getEventsBeforeZC
 Queries the catalog for Events before a start date using ZCatalog query dictionary.
getEventsBetweenAQ
 Queries catalog to retrieve events between two dates using AdvancedQuery.
getEventsBetweenZC
 Queries the catalog for Events between two dates using the ZCatalog query.
getSubjectCSSClasses
 Returns a CSS class name based on the event Type (portal type)
getMonthName
 Returns a month name given a month integer, or a month list
getNumOfDays
 Returns an int for number of days or dates between start and end. a "day" is
 24 hours, a "date" is calendar day (midnight)
getNumOfHours
 Returns integer number of hours from start of calendar to event. works for
 weekbyhour or day view.
getStartOfDay
 Returns a DateTime object for the beginning of the Day view showing on the
 calendar (defaults to midnight).
getStartOfMonth
 Returns a DateTime object for midnight on 1st day of the Month
getStartOfMonthToShow
 Returns a DateTime for the first of the Month view showing on the calendar
 (end of the previous month, usually).

51 of 61 CalendarX Manual -- Appendix C Python Scripts

getStartOfWeek
 Returns a DateTime object for the start of the first day of the week, for use on
 the calendar month view.
getSubjectCSSClasses
 Returns a CSS class name based on the event Subject
isCalendarManager
 Returns True (1) if current user is considered a "Calendar Manager"
listUnique
 Returns list of unique values from a list of values not unique and if listOfSubjects
 is True, creates a unique list of subjects from that attribute
makeCSV
 Returns a CSV (comma separated variables) string from a list.
queriesSubtract
 subtracts q2 from q1: looks for objects in q1 that are NOT in q2 and builds a q1new
 list of those objects, and returns q1new
queriesUnique
 Returns Brain of unique events from a Brain of events not unique

2. A brief overview of Python script use in CalendarX view templates:

 CalendarX strives to make as much of the functionality of the calendar closely accessible
to the Plone developer for customization. That's why so little of the functional Python code is
located in the CalendarXFolder class, and so much of it is present in the /portal_skins/CalendarX
skins folder. From there, you can easily customize the behavior of your CalendarX instances,
and even make each of several CalendarX instances behave differently from the others.

 Here's the basic story of how CalendarX creates a view.
1. Call the URL
(e.g., http://mycalendar.biz/calendar/month? currentDate=2005/01/10&xmy=0&xsub=ALL)

This calls the month.pt template and initiates the view generation process with three calendar
parameters passed through the URL: currentDate, xmy, and xsub.

2. The month page template gathers a number of variables together at the beginning that can be
used throughout the page template ('global' variables). Code for this looks like this:

<body>
<!-- Defining global variables -->
<div metal:fill-slot="main"
 tal:define="
 MODIFIED string:mod 0.4.12 use calendarPrint.css;
 viewname string:month;
 DateTime python:modules['DateTime'].DateTime;
 Dict python:here.getDictMonth();
 url here/absolute_url;
 ampm Dict/ampm;
 etc....

52 of 61 CalendarX Manual -- Appendix C Python Scripts

One by one, here's what those lines do:

1. MODIFIED defines a string... in this case it serves simply as a comment. Each of the page
templates has a similar string at the beginning to show how it differs from previous versions of
the template. Another common string I use in page template code is "COMMENT".

2. viewname defines a string 'month'. This parameter is passed to other scripts for 'month'
specific needs.

3. DateTime defines a Python module called 'DateTime'. This is used as an abbreviation so that
wherever else (such as macro code) that we need to call a DateTime function, the module will be
available for us.

4. Dict defines a dictionary of useful information. There are many parameters that get defined in
each of the templates, and some of these are common to all the templates. What we do here is
call a template-specific Python script called getDictMonth.py that in turn calls another script
called getDictCommon.py, and this returns a dictionary of many variables, as you will see in the
following statements.

5. url defines the URL of the current page by calling here/absolute_url.

6. ampm defines a Boolean (True/False) value based on the value of the 'hoursDisplay' property
found in the CX_props_calendar property sheet (True if hoursDisplay = 'ampm', and False if
hoursDisplay equals anything else). This value is returned to the month template from 'Dict', the
dictionary we got from getDictMonth script (and in turn, this value comes from the
getDictCommon script). In earlier versions of CalendarX, these variables were all defined right
here in the page template code. In this case the code would have looked like this:

ampm python:test(here.getCXAttribute('hoursDisplay') == '12ampm',1,0)

and there would have been many, many such definitions one after the other, some more complex
than others. Instead, all (well, at least much) such Python logic has been moved out of the
template and into a few scripts to clean up the template code and so that such code only needs to
be changed in one place (rather than in many page templates).

Cleaning and rearranging the code in CalendarX is an ongoing battle/chore/drama. Currently,
there are still several places where code could and should be moved out of the page templates
and into other Python scripts, but hasn't yet. It doesn't mean CalendarX is bad... it just means I
haven't gotten to everything yet. CalendarX is not, by the way, model code for how to build
Products in Plone.... it is full of less-than-best practices. But with each new branch of the code I
try to make improvements in the architecture, and get more good advice. Meanwhile, it works,
and I'm happy to maintain it and make gradual improvements.

53 of 61 CalendarX Manual -- Appendix C Python Scripts

3. getCXAttributes.py -- How CalendarX gathers properties from the property sheets.

4. getCXMacro.py -- How CalendarX finds its macros.

5. How CalendarX queries for events (getCXEventsBetween.py and friends).

54 of 61 CalendarX Manual -- Appendix D Guide to page templates and macros in CalendarX.

Appendix D: Guide to page template views and macros in CalendarX

There are four views in CalendarX: Month, WeekByDay, WeekByHour and Day. Each
template has a similar overall style, with a number of defined variables at the top, followed by
calls to CSS and Javascript files, and then code to generate the views. Much of the detailed code
has been pulled out of these templates into macros and Python scripts to make it easier to
maintain and manage. Additionally, most of the important features of the views that can be
made configurable have been pulled out and put into configurable properties to minimize the
amount of customization required to create a unique calendar for your Plone site. These
properties are described in Appendix B. The Python scripts are described separately in
Appendix C.

Macros are simply page template code snippets that are called in from the view templates -- this
separates the code so that it only needs to be changed in one place, rather than in each template,
when a common change should propagate through all the views. The macros for CalendarX are
all located in CX_props_macros.pt, in the /skins/CalendarX folder of your CalendarX product
distribution, and on your site this can be found and customized from the /portal_skins/CalendarX
folder. Here is a brief description of these macros in the order they are found in
CX_props_macros, with a brief description of each macro's purpose.

1. samplemacronamehere - a sample macro that is unused anywhere. Copy and paste this to use
as a starting point for macro code of your own.
2. caltabsforviews - the view tabs at the top of the calendar: month, weekbyday, weekbyhour,
day, help.
3. prevnextcurrentlinks - the text and links at the top/bottom of calendar: previous month, next
month, the Date string (e.g., June 2006), and the Jump To Date widget.
4. monthdaysofweek - orders days of the week properly for the month view
5. hoursdisplay - displays hours on the day, weekbyhour views.
6. popuptextbox - generates the rollover popup text boxes for each event. You can control what
appears here through the CX_props_popup property sheet, and you can further customize it here,
if desired.
7. eventlister - displays the event text and link in the calendar cells for each event. This macro
runs once for each event listed on a view.
8. copyright - Powered by CalendarX link... comment the code out here if you don't want to
show this on your website ;-(
9. subjectlinks - shows choices for Subject categories, plus other widgets. This is a long,
complicated macro. In the new 0.5 branch I've created several versions of this macro so that you
can choose different layouts just using the property sheets. You could do the equivalent here...
just copy the entire macro and rename the original one subjectlinks_ORIGINAL. Then modify
your new subjectlinks macro and the views will pick up the new one here.

 Read through Appendix C on Python scripts to learn how getCXMacro.py helps find the
macro needed.

55 of 61 CalendarX Manual -- Appendix D Guide to page templates and macros in CalendarX.

Month view:
 The Month view displays a month of events at one time, with a standard calendar
appearance (4 to 6 weeks of seven days in each week). Events within each day are arranged in
order of starting time.
 There are several configurable properties that ONLY affect the month view, using the
CX_props_calendar property sheet (see Appendix B for details on each):

• showOnlyEventsInMonth: this controls whether out-of-month events are shown or not
(e.g., events on January 31 for a February calendar view)

• labelEventsOnlyAtStart: this controls whether the title of a multi-day event is shown on
each of the days, or just on the first day of the event.

Here is a typical month view:

56 of 61 CalendarX Manual -- Appendix D Guide to page templates and macros in CalendarX.

WeekByDay view:
 The WeekByDay view displays a week of events at one time, with each day having one
block of events, arranged in the same order as the starting time of each event. The starting day
of the week (Sunday, Monday, etc.) is configurable by the Adminstrator, using the
dayOfWeekToStart property of the CX_props_calendar property sheet.

 Here is a typical weekbyday view:

57 of 61 CalendarX Manual -- Appendix D Guide to page templates and macros in CalendarX.

WeekByHour view:
 The WeekByHour view is the most complicated view... it displays a week of events
arranged hour by hour through each day. In this respect it is a bit like seven day views arranged
side by side. The view can be set to show the entire 24 hour day (midnight to midnight), or in
the default setting from 8am to 8pm, or for any set interval (using the dayViewStartHour and
dayViewEndHour properties in the CX_props_calendar property sheet). The listing is arranged
in one-hour blocks, and multiple events within the hour are arranged in order of starting time.
 The starting day of the week (Sunday, Monday, etc.) is configurable by the Adminstrator,
using the dayOfWeekToStart property of the CX_props_calendar property sheet. The hour
display on the left side of the view can be configured as 12 hour (am/pm) display, or as a 24 hour
display (using the hoursDisplay property in CX_props_calendar). Events that start on this day
but before the starting display time (e.g., a meteor shower event at 4am) will appear in the
Continuing events block at the top, and later events (late parties) will show up at the bottom of
the page in a Later events block. Rolling over these events with the mouse will highlight the
appropriate day they start on.

 Here is a typical weekbyhour view:

58 of 61 CalendarX Manual -- Appendix D Guide to page templates and macros in CalendarX.

Day view:
 The Day view displays one day's worth of events. The view can be set to show the entire
24 hour day (midnight to midnight), or in the default setting from 8am to 8pm, or for any set
interval (using the dayViewStartHour and dayViewEndHour properties in the
CX_props_calendar property sheet). The listing is arranged in one-hour blocks, and multiple
events within the hour are arranged in order of starting time.
 The starting day of the week (Sunday, Monday, etc.) is configurable by the Adminstrator,
using the dayOfWeekToStart property of the CX_props_calendar property sheet. The hour
display on the left side of the view can be configured as 12 hour (am/pm) display, or as a 24 hour
display (using the hoursDisplay property in CX_props_calendar). Events that start on this day
but before the starting display time (e.g., a meteor shower event at 4am) will appear in the
Continuing events block at the top, and later events (late parties) will show up at the bottom of
the page in a Later events block.

 Here is a typical day view:

59 of 61 CalendarX Manual -- Appendix E Guide to CSS and JavaScript code in CalendarX.

Appendix E: Guide to CSS and JavaScript code in CalendarX

 CSS is used in CalendarX. So is JavaScript. This is good.

 Without touching the page templates, you can configure nearly every visible color and
font shown in CalendarX. That's what the plethora of properties in CX_props_css is all about.
Try it, you'll see.

 The JavaScript is much more complicated. Even I'm not sure what everything does, and
I've been over it all and through it more than twice or thrice.

 For more good information, read the source code. Thank Limi for Plone CSS, and Oliver
for PloneCalendar CSS, and thank Oliver for PloneCalendar JavaScript, which together make
nice popup text boxes and rollover highlighting quite possible.

[[more to come...]]

60 of 61 CalendarX Manual -- Appendix F About Python, Zope, Plone, and CalendarX.

Appendix F: About Python, Zope, Plone, and CalendarX 0.5 branch

 Python is a programming language designed for clean object oriented programming with
high-level commands, a rich collection of libraries, and an elegant syntax that allows rapid
development. Python is an open source project.
 Zope is an application server built on the strength of the Python language, with
authentication management and an object database that is ideal for web development. Zope
provides a powerful base for rapid and maintainable web application development that scales
well with inexpensive hardware. Zope is an open source project.
 Plone is an object-oriented content management system (CMS) built on the powerful
Zope application server, and featuring rapid development of custom content types and a flexible,
standards-compliant web interface. Because of its strong base in Zope and Python, there simply
is no other professional quality CMS more flexible and powerful than Plone. Plone is an open
source project.
 CalendarX is a web-based calendar product that works with Plone portals. CalendarX is
pretty good, and it's getting better all the time. CalendarX is an open source project.

 And as one raving fan puts it:

"i love calendarx coz...
 it does what it says on the tin."

What more can you ask for?

OK... maybe iCalendar integration, hotsync with your Palm or Outlook or Evolution, recurring
events, better group functionality, a portlet version, lots more new kinds of views to choose
from, clickable icons to let you start a new event from any date or time within the calendar,
easily customizable new Event types, PopUp event detail windows instead of the default Plone
views, skinning for a standalone calendar that really speeds things up by peeling away some of
the Plone extras, maybe a few others.

But, of course, it doesn't say any of those things on the tin.

So, now we introduce the 0.5 branch of CalendarX. All new development is currently focused
on the 0.5 branch, currently (mid-Feb 2005) at version 0.5.1(dev). Each release of the
development branch is as bugfree as possible (I don't release a tarball until all critical bugs have
been squashed), and many times development releases are used in production Plone sites (that
was certainly the case for the 0.4 branch, and I think it may already be the case for some 0.5
branch sites). However, I don't recommend investing significant work customizing a production
calendar based on the development branches simply because I make no guarantee that the API
and internals of the development branch will remain stable into the future... once I make it up to

61 of 61 CalendarX Manual -- Appendix F About Python, Zope, Plone, and CalendarX.

the alpha or beta stage, you can be pretty certain that nothing major is going to change and any
changes to the CalendarX branch beyond that will be bugfixes and non-critical feature
improvements. That's my caveat... but that said, there are folks out there (me included) that use
the development branch releases in production use all the time, and aren't afraid to jump in and
modify things to make it work the way we want it to. Go for it!

Here's a screen shot of 0.5.1 branch of CalendarX, default release with portlet_cx_choices:

Some of the new features in 0.5 branch of CalendarX:
1. Control of calendar choices can use a portlet, cleaning up the calendar header nicely.
2. A month-view portlet_calendarx is available to replace the stock portlet_calendar of Plone,
and it draws its behavior from any designated CalendarX instance in your portal.
3. Greatly expanded property selection (nearly 100 new properties) for controlling what events
are displayed on your calendar, and who can see them, including some group functionality.
4. A User-Picker widget (shown above) to let you select a few Users and see only their events
on the calendar. Group-Picker widget to follow sometime in the future.
5. Speed. CalendarX-0.5 branch is now significantly faster than the 0.4 branch.

No manual yet for the 0.5 branch, but the new features are documented in the /docs folder, just as
they are for the 0.4 branch. Happy scheduling!
+lupa+

	Table of Contents
	I. CalendarX Overview
	II. A Guide for Users
	III. A Guide for Administrators
	IV. A Guide for Developers
	V. Use Case: Creating a Resource Scheduler
	A. Installing CalendarX
	B. Property Sheets in CalendarX
	CX_props_addeventlink
	CX_props_calendar
	CX_props_css
	CX_props_custom
	CX_props_eventdisplays
	CX_props_popup
	CX_props_subcalendar

	C. Python scripts in CalendarX
	D. Page template views and macros in CalendarX
	E. CSS and Javascript in CalendarX
	F. Py-Zo-Plone-CalX and the future

